Integration and spatial analysis of high-resolution geophysical and geological data, eastern Gaspé Peninsula

2004 ◽  
Vol 41 (5) ◽  
pp. 603-618 ◽  
Author(s):  
Christine St-Laurent ◽  
Daniel Lebel ◽  
Denis Lavoie ◽  
Michel Malo ◽  
Camille St-Hilaire

In the vicinity of the Town of Gaspé, the relationships between the Silurian-Devonian sedimentary succession of the Gaspé Belt and the Humber and the Dunnage zones are complex. To unravel these relationships, we used high-resolution aeromagnetic data and regional gravimetric data coupled with field tectonostratigraphic information. The magnetic vertical derivative located several magnetic anomalies associated with near-surface features in the Silurian–Devonian cover sequence. In particular, a conglomerate with magnetic fragments that overlies the Late Silurian Salinic Unconformity is clearly recognizable. Large ovoid anomalies of significant intensity located in the Silurian–Devonian sedimentary cover area cannot be associated with any known geological feature. The interpretation of the high-pass and low-pass filtered aeromagnetic survey indicates that the ovoid anomalies originate below the Silurian–Devonian cover sequence. The most significant of the ovoid anomalies is associated with a gravimetric anomaly. It is proposed that these geophysical anomalies are probably associated with ultramafic and (or) volcanic rocks correlative in the subsurface with outcrops of the Cambrian–Ordovician lithologies of the Lady Step Complex and (or) the Shickshock Group.

2011 ◽  
Vol 48 (6) ◽  
pp. 1065-1089 ◽  
Author(s):  
M.D. Thomas ◽  
M. Pilkington ◽  
R.G. Anderson

The ability of airborne sensors to image the magnetic signatures of prospective Quesnel terrane rocks through ubiquitous Quaternary glacial sedimentary cover in central British Columbia helps target new areas for mineral exploration. Newly acquired high-resolution data provide new perspectives on the nature and probable areal distribution of many geological units, revealing detail and information unattainable by conventional geological mapping. In combination with gravity data, these magnetic data indicate the presence of a granitic intrusion and a development of Nicola Group volcanic rocks, both potential hosts for porphyry- and (or) vein-type mineralization, under younger Tertiary volcanic cover. At a finer scale, magnetic patterns and fabrics permit discrimination between volcanic rocks of the Tertiary Chilcotin and Kamloops groups, and detection of subtle compositional and (or) structural variations within the groups. Contacts between volcanic cover and basement rocks and between basement units are more accurately defined, significantly reducing locally the areal extent of volcanic cover and opening up more ground for exploration. The high resolution of features in images of magnetic vertical derivatives reveals the Naver pluton to be more complex than currently mapped, comprising several integral elements, one of which may be a large roof pendant. Internal subdivisions of the Thuya batholith are defined, and annular marginal phases are proposed within two large granodioritic intrusions. Several new intrusions are proposed within the extensive, mainly sedimentary Devonian–Triassic terrain northeast of Kamloops, internal composition variation is suggested for some larger mapped intrusions, and areas underlain by some intrusions are enlarged.


Author(s):  
В. Зинько ◽  
V. Zin'ko ◽  
А. Зверев ◽  
A. Zverev ◽  
М. Федин ◽  
...  

The seismoacoustical investigations was made in the western part of the Kerch strait (Azov sea) near Kamysh-Burun spit. The fracture zone with dislocated sedimentary rocks layers and buried erosional surface was revealed to the west of spit. Three seismofacial units was revealed to the east of spit. The first unit was modern sedimentary cover. The second ones has cross-bedding features and was, probably, the part of early generation of Kamysh-Burun spit, which lied to the east of its modern position. The lower border of the second unit is the erosional surface supposed of phanagorian age. The third unit is screened by acoustic shedows in large part.


Author(s):  
Thorkild M. Rasmussen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article. Rasmussen, T. M. (1). Aeromagnetic survey in central West Greenland: project Aeromag 2001. Geology of Greenland Survey Bulletin, 191, 67-72. https://doi.org/10.34194/ggub.v191.5130 The series of government-funded geophysical surveys in Greenland was continued during the spring and summer of 2001 with a regional aeromagnetic survey north of Uummannaq, project Aeromag 2001 (Fig. 1). The survey added about 70 000 line kilometres of high-quality magnetic measurements to the existing database of modern airborne geophysical data from Greenland. This database includes both regional high-resolution aeromagnetic surveys and detailed surveys with combined electromagnetic and magnetic airborne measurements.


2021 ◽  
Vol 18 (1) ◽  
pp. 145-162
Author(s):  
B Butchibabu ◽  
Prosanta Kumar Khan ◽  
P C Jha

Abstract This study aims for the protection of a crude-oil pipeline, buried at a shallow depth, against a probable environmental hazard and pilferage. Both surface and borehole geophysical techniques such as electrical resistivity tomography (ERT), ground penetrating radar (GPR), surface seismic refraction tomography (SRT), cross-hole seismic tomography (CST) and cross-hole seismic profiling (CSP) were used to map the vulnerable zones. Data were acquired using ERT, GPR and SRT along the pipeline for a length of 750 m, and across the pipeline for a length of 4096 m (over 16 profiles of ERT and SRT with a separation of 50 m) for high-resolution imaging of the near-surface features. Borehole techniques, based on six CSP and three CST, were carried out at potentially vulnerable locations up to a depth of 30 m to complement the surface mapping with high-resolution imaging of deeper features. The ERT results revealed the presence of voids or cavities below the pipeline. A major weak zone was identified at the central part of the study area extending significantly deep into the subsurface. CSP and CST results also confirmed the presence of weak zones below the pipeline. The integrated geophysical investigations helped to detect the old workings and a deformation zone in the overburden. These features near the pipeline produced instability leading to deformation in the overburden, and led to subsidence in close vicinity of the concerned area. The area for imminent subsidence, proposed based on the results of the present comprehensive geophysical investigations, was found critical for the pipeline.


1994 ◽  
Vol 357 ◽  
Author(s):  
A. J. Pedraza ◽  
Siqi Cao ◽  
L. F. Allard ◽  
D. H. Lowndes

AbstractA near-surface thin layer is melted when single crystal alumina (sapphire) is pulsed laserirradiated in an Ar-4%H2 atmosphere. γ-alumina grows epitaxially from the (0001) face of axalumina (sapphire) during the rapid solidification of this layer that occurs once the laser pulse is over. Cross sectional high resolution transmission electron microscopy (HRTEM) reveals that the interface between unmelted sapphire and γ-alumina is atomistically flat with steps of one to a few close-packed oxygen layers; however, pronounced lattice distortions exist in the resolidified γ-alumina. HRTEM also is used to study the metal-ceramic interface of a copper film deposited on a laser-irradiated alumina substrate. The observed changes of the interfacial structure relative to that of unexposed substrates are correlated with the strong enhancement of film-substrate bonding promoted by laser irradiation. HRTEM shows that a thin amorphous film is produced after irradiation of 99.6% polycrystalline alumina. Formation of a diffuse interface and atomic rearrangements that can take place in metastable phases contribute to enhance the bonding strength of copper to laser-irradiated alumina.


2021 ◽  
Author(s):  
Mikhail Kaban ◽  
Alexei Gvishiani ◽  
Roman Sidorov ◽  
Alexei Oshchenko ◽  
Roman Krasnoperov

<p><span>A new model has been developed for the density and thickness of the sedimentary cover in a vast region at the junction of the southern part of the East European Platform, the Pre-Caucasus and some structures adjacent to the south, including the Caucasus. Structure and density of sedimentary basins was studied by employing the approach based on decompensation of gravity anomalies. Decompensative correction for gravity anomalies reduces the effect of deep masses providing compensation of near-surface density anomalies, in contrast to the conventional isostatic or Bouguer anomalies. . The new model of sediments, which implies their thickness and density, gives a more detailed description of the sedimentary thickness and density and reveals new features which were not or differently imaged by previous studies. It helps in better understanding of the origin and evolution of the basins and provides a background for further detailed geological and geophysical studies of the region.</span></p>


2021 ◽  
Author(s):  
Benoit Deffontaines ◽  
Kuo-Jen Chang ◽  
Samuel Magalhaes ◽  
Gérardo Fortunato

<p>Volcanic areas in the World are often difficult to map especially in a structural point of view as (1) fault planes are generally covered and filled by more recent lava flows and (2) volcanic rocks have very few tectonic striations. Kuei-Shan Tao (11km from Ilan Plain – NE Taiwan) is a volcanic island, located at the soutwestern tip of the South Okinawa trough (SWOT). Two incompatible geological maps had been already published both lacking faults and structural features (Hsu, 1963 and Chiu et al., 2010). We propose herein not only to up-date the Kuei-Shan Tao geological map with our high resolution dataset, but also to create the Kuei-Shan Tao structural scheme in order to better understand its geological and tectonic history.</p><p>Consequently, we first acquired aerial photographs from our UAS survey and get our new UAS high resolution DTM (HR UAS-DTM hereafter) with a ground resolution <10cm processed through classical photogrammetric methods. Taking into account common sense geomorphic and structural interpretation and reasoning deduced form our HR UAS-DTM, and the outcropping lithologies situated all along the shoreline, we have up-dated the Kuei-Shan Tao geological mapping and its major structures. To conclude, the lithologies (andesitic lava flows and pyroclastic falls) and the new structural scheme lead us to propose a scenario for both the construction as well as the dismantling of Kuei-Shan Tao which are keys for both geology and geodynamics of the SWOT.</p>


Sign in / Sign up

Export Citation Format

Share Document