The Twillingate Granite and nearby Volcanic Groups: An Island Arc Complex In Northeast Newfoundland

1975 ◽  
Vol 12 (6) ◽  
pp. 982-995 ◽  
Author(s):  
Harold Williams ◽  
John G. Payne

The Twillingate Granite cuts mafic pillow lavas and silicic fragmental volcanic rocks of the Sleepy Cove Group. The granitic rocks are soda-rich and they vary from intensely foliated and mylonitic in the south to mildly foliated and massive toward the north. The Sleepy Cove volcanic rocks show similar structural and metamorphic variations from lineated amphibolitic pillow lavas, to elongated pillows of greenschist metamorphic grade, to slightly metamorphosed and relatively undeformed pillow lavas.The collective terrane occupied by the Twillingate Granite and Sleepy Cove Group is virtually surrounded by intrusive mafic dikes that are integral and coeval parts of the Moretons Harbour and Herring Neck Groups. The dikes decrease in abundance away from the contacts of the collective Twillingate – Sleepy Cove terrane. The essentially intrusive contact is modified by faults and locally, the profuse dike swarms are absent.Regional relationships, thickness, lithofacies, and petrochemistry all indicate that the Moretons Harbour and Herring Neck Groups relate to an episode of Lower Ordovician island arc volcanism. Intrusive relationships and contrasts in structural style and metamorphic grade indicate that the Twillingate Granite and Sleepy Cove Group are older. These older rocks are also interpreted as island arc derivatives, so that in their present position, they may represent the remnant of a partly deformed and metamorphosed older arc that is now bordered by relatively undeformed Lower Ordovician volcanic rocks.Similar relationships within transported sequences of western Newfoundland suggest a central Newfoundland island arc provenance for the transported Little Port Complex.

1994 ◽  
Vol 31 (1) ◽  
pp. 176-181 ◽  
Author(s):  
Gary G. Lash

The Riding Island Graywacke (late Caradoc – Ashgill) crops out in Notre Dame Bay, north-central Newfoundland. Previous tectonic interpretations suggest that this succession of turbidites and hemipelagic mudstone accumulated in a basin adjacent to an active volcanic arc. The varied framework mineralogy of 29 Riding Island samples studied, however, records derivation from a complex source terrane composed of mafic and silicic volcanic rocks, sedimentary and metamorphic successions, and plutonic rocks. Assessment of the tectonic environment of deposition of the Riding Island Graywacke by use of popular sandstone provenance ternary diagrams yields ambiguous results. The mineralogy of the Riding Island samples reveals a change in tectonic scenario from one dominated by island-arc volcanism in pre-Caradoc time to a setting marked by tectonic shortening, transcurrent faulting, and terrane accretion near the end of the Ordovician. The complex composition of these sandstones and the fact that they accumulated after island-arc volcanism had ended argue for deposition in a collisional successor basin that formed during the early stages of mountain building along the proto-North American continental margin. This inferred Late Ordovician collisional successor basin may have also been the locus of deposition for other minera-logically complex late Caradoc – Ashgill units exposed in Notre Dame Bay, such as the Sansom Formation.


1988 ◽  
Vol 52 (365) ◽  
pp. 147-159 ◽  
Author(s):  
M. Qasim Jan

AbstractThe southern part of the Cretaceous Kohistan island arc is occupied by an extensive belt dominantly comprised of amphibolites. These include banded amphibolites of partly meta-volcanic parentage, and non-banded amphibolites derived from intrusive rock. In addition to being relict, banding has also been produced by shear deformation, metamorphic/metasomatic segregation and, possibly, by lit-par-lit injection of plagiogranitic material. Non-banded amphibolites also occur as retrograde products of noritic granulites forming the lopolithic Chilas complex. The chemistry of 37 rocks has been compared with those of known tectonic environments. The amphibolites have chemical characteristics similar to volcanic rocks found in island arcs and most of the analyses apparently support affinity with the calc-alkaline series. The amphibolites consist essentially of hornblende, plagioclase and/or epidote. Garnet and clinopyroxene have developed locally in rocks of appropriate bulk composition. Metamorphism may have taken place during the mid-Cretaceous under conditions of 550 to 680°C and 4.5 to 6.5 kbar PH2O. The metamorphic grade appears to increase from the centre of the southern belt toward the Chilas complex to the north and Indus-Zangbo suture (IZS) to the south. In the vicinity of the IZS, garnet-clinopyroxene ± amphibole assemblage developed locally in response to high P-T.


2018 ◽  
Vol 45 (3) ◽  
pp. 301 ◽  
Author(s):  
Francisco Hervé ◽  
Mauricio Calderón ◽  
Mark Fanning ◽  
Robert Pankhurst ◽  
Carlos W. Rapela ◽  
...  

Previous work has shown that Devonian magmatism in the southern Andes occurred in two contemporaneous belts: one emplaced in the continental crust of the North Patagonian Massif and the other in an oceanic island arc terrane to the west, Chaitenia, which was later accreted to Patagonia. The country rocks of the plutonic rocks consist of metasedimentary complexes which crop out sporadically in the Andes on both sides of the Argentina-Chile border, and additionally of pillow metabasalts for Chaitenia. Detrital zircon SHRIMP U-Pb age determinations in 13 samples of these rocks indicate maximum possible depositional ages from ca. 370 to 900 Ma, and the case is argued for mostly Devonian sedimentation as for the fossiliferous Buill slates. Ordovician, Cambrian-late Neoproterozoic and “Grenville-age” provenance is seen throughout, except for the most westerly outcrops where Devonian detrital zircons predominate. Besides a difference in the Precambrian zircon grains, 76% versus 25% respectively, there is no systematic variation in provenance from the Patagonian foreland to Chaitenia, so that the island arc terrane must have been proximal to the continent: its deeper crust is not exposed but several outcrops of ultramafic rocks are known. Zircons with devonian metamorphic rims in rocks from the North Patagonian Massif have no counterpart in the low metamorphic grade Chilean rocks. These Paleozoic metasedimentary rocks were also intruded by Pennsylvanian and Jurassic granitoids.


1987 ◽  
Vol 24 (4) ◽  
pp. 813-825 ◽  
Author(s):  
Ronald Doig

The Churchill Province north of the Proterozoic Cape Smith volcanic fold belt of Quebec may be divided into two parts. The first is a broad antiform of migmatitic gneisses (Deception gneisses) extending north from the fold belt ~50 km to Sugluk Inlet. The second is a 20 km wide zone of high-grade metasedimentary rocks northwest of Sugluk Inlet. The Deception gneisses yield Rb–Sr isochron ages of 2600–2900 Ma and initial ratios of 0.701–0.703, showing that they are Archean basement to the Cape Smith Belt. The evidence that the basement rocks have been isoclinally refolded in the Proterozoic is clear at the contact with the fold belt. However, the gneisses also contain ubiquitous synclinal keels of metasiltstone with minor metapelite and marble that give isochron ages less than 2150 Ma. These ages, combined with low initial ratios of 0.7036, show that they are not part of the basement, as the average 87Sr/86Sr ratio for the basement rocks was about 0.718 at that time.The rocks west of Sugluk Inlet consist mainly of quartzo-feldspathic sediments, quartzites, para-amphibolites, marbles, and some pelite and iron formation. In contrast to the Proterozoic sediments in the Deception gneisses, these rocks yield dates of 3000–3200 Ma, with high initial ratios of 0.707–0.714. These initial ratios point to an age (or a provenance) much greater than that of the Archean Deception gneisses. The rocks of the Sugluk terrain are intruded by highly deformed sills of granitic rocks with ages of about 1830 Ma, demonstrating again the extent and severity of the Proterozoic overprint. The eastern margin of this possibly early Archean Sugluk block is a discontinuity in age, lithology, and geophysical character that could be a suture between two Archean cratons. It is not known if such a suturing event is of Archean age, or if it is related to the deformation of the Cape Smith Fold Belt.Models of evolution incorporating both the Cape Smith Belt and the Archean rocks to the north need to account for the internal structure of the fold belt, the continental affinity of many of the volcanic rocks, the continuity of basement around the eastern end of the belt, and the increase in metamorphism through the northern part of the belt into a broad area to the north. The Cape Smith volcanic rocks may have been extruded along a continental rift, parallel to a continental margin at Sugluk. Continental collison at Sugluk would have thrust the older and higher grade Sugluk rocks over the Deception gneisses, produced the broad Deception antiform, and displaced the Cape Smith rocks to the south in a series of north-dipping thrust slices.


2020 ◽  
Vol 50 (1) ◽  
pp. 83-130 ◽  
Author(s):  
Pietari Skyttä ◽  
Pär Weihed ◽  
Karin Högdahl ◽  
Stefan Bergman ◽  
Michael B. Stephens

AbstractThe Bothnia–Skellefteå lithotectonic unit is dominated by turbiditic wacke and argillite (Bothnian basin), deposited at 1.96 (or older)–1.86 Ga, metamorphosed generally under high-grade conditions and intruded by successive plutonic suites at 1.95–1.93, 1.90–1.88, 1.87–1.85 and 1.81–1.76 Ga. In the northern part, low-grade and low-strain, 1.90–1.86 Ga predominantly magmatic rocks (the Skellefte–Arvidsjaur magmatic province) are enclosed by the basinal components. Subduction-related processes in intra-arc basin and magmatic arc settings, respectively, are inferred. Changes in the metamorphic grade and the relative timing of deformation and structural style across the magmatic province are linked to major shear zones trending roughly north–south and, close to the southern margin, WNW–ESE. Zones trending WNW–ESE and ENE–WSW dominate southwards. Slip along the north–south zones in an extensional setting initiated synchronously with magmatic activity at 1.90–1.88 Ga. Tectonic inversion steered by accretion to a craton to the east, involving crustal shortening, ductile strain and crustal melting, occurred at 1.88–1.85 Ga. Deformation along shear zones under lower-grade conditions continued at c. 1.8 Ga. Felsic volcanic rocks (1.90–1.88 Ga) host exhalative and replacement-type volcanogenic massive sulphide deposits (the metallogenic Skellefte district). Other deposits include orogenic Au, particularly along the ‘gold line’ SW of this district, porphyry Cu–Au–Mo, and magmatic Ni–Cu along the ‘nickel line’ SE of the ‘gold line’.


Sign in / Sign up

Export Citation Format

Share Document