Conditions and timing of metamorphism in the southern Abitibi greenstone belt, Quebec

1995 ◽  
Vol 32 (6) ◽  
pp. 787-805 ◽  
Author(s):  
W. G. Powell ◽  
D. M. Carmichael ◽  
C. J. Hodgson

Regional metamorphism, ranging in grade from the subgreenschist-facies to the greenschist–amphibolite-facies transition, affects all Archean supracrustal rocks (>2677 Ma) in the Rouyn–Noranda area. Contact metamorphic minerals associated with the posttectonic Preissac–Lacorne batholith (2643 Ma) show no evidence of a regional retrograde event. Accordingly, the age of regional metamorphism can be bracketed between 2677 and 2643 Ma. Three reaction isograds were mapped in subgreenschist-facies metabasites, dividing the low-grade rocks into three metamorphic zones: the pumpellyite–actinolite zone, the prehnite–pumpellyite zone, and the prehnite–epidote zone. In addition, the pumpellyite–actinolite–epidote–quartz bathograd, corresponding to a pressure of approximately 200 MPa, occurs on both sides of the Porcupine–Destor fault. Low-pressure regional metamorphism is also indicated both by the occurrence of an actinolite–oligoclase zone, and the persistence of pre-regional-metamorphic andalusite. The coincidence of andalusite and the actinolite-oligoclase zone indicates that pressure was <330 MPa at the greenschist-amphibolite transition. The geothermal gradient during metamorphism was approximately 30 °C/km. Regionally, isograds dip shallowly to the north and trend subparallel to lithological and structural trends. Metamorphic minerals in metabasites define tectonic fabrics only near major fault zones and in zones of CO2 metasomatism. In biotite zone metasedimentary rocks the schistosity is defined by mica and amphibole. These textures indicate that metamorphism and fabric development were coeval. However, the actinolite–epidote isograd cuts the Porcupine–Destor fault, indicating that regional metamorphism postdates movement along this fault. The strong fabrics associated with the Porcupine–Destor and Larder Lake–Cadillac faults must have developed through a process dominated by flattening strain.

2021 ◽  
Author(s):  
D. Yergeau ◽  
P. Mercier-Langevin ◽  
B. Dubé ◽  
V. McNicoll ◽  
S. E. Jackson ◽  
...  

Abstract The Westwood deposit, located in the Archean Doyon-Bousquet-LaRonde mining camp in the southern Archean Abitibi greenstone belt, contains 4.5 Moz (140 metric t) of gold. The deposit is hosted in the 2699–2695 Ma submarine, tholeiitic to calc-alkaline volcanic, volcaniclastic, and intrusive rocks of the Bousquet Formation. The deposit is located near the synvolcanic (ca. 2699–2696 Ma) Mooshla Intrusive Complex that hosts the Doyon epizonal intrusion-related Au ± Cu deposit, whereas several Au-rich volcanogenic massive sulfide (VMS) deposits are present east of the Westwood deposit. The Westwood deposit consists of stratigraphically stacked, contrasting, and overprinting mineralization styles that share analogies with both the intrusion-related and VMS deposits of the camp. The ore zones form three distinct, slightly discordant to stratabound corridors that are, from north (base) to south (top), the Zone 2 Extension, the North Corridor, and the Westwood Corridor. Syn- to late-main regional deformation and upper greenschist to lower amphibolite facies regional metamorphism affect the ore zones, alteration assemblages, and host rocks. The Zone 2 Extension consists of Au ± Cu sulfide (pyrite-chalcopyrite)-quartz veins and zones of disseminated to semimassive sulfides. The ore zones are spatially associated with a series of calc-alkaline felsic sills and dikes that crosscut the mafic to intermediate, tholeiitic to transitional, lower Bousquet Formation volcanic rocks. The metamorphosed proximal alteration consists of muscovite-quartz-pyrite ± gypsum-andalusite-kyanite-pyrophyllite argillic to advanced argillic-style tabular envelope that is up to a few tens of meters thick. The North Corridor consists of auriferous semimassive to massive sulfide veins, zones of sulfide stringers, and disseminated sulfides that are hosted in intermediate volcaniclastic rocks at the base of the upper Bousquet Formation. The Westwood Corridor consists of semimassive to massive sulfide lenses, veins, zones of sulfide stringers, and disseminated sulfides that are located higher in the stratigraphic sequence, at or near the contact between calc-alkaline dacite domes and overlying calc-alkaline rhyodacite of the upper Bousquet Formation. A large, semiconformable distal alteration zone that encompasses the North Corridor is present in the footwall and vicinity of the Westwood Corridor. This metamorphosed alteration zone consists of an assemblage of biotite-Mn garnet-chlorite-carbonate ± muscovite-albite. A proximal muscovite-quartz-chlorite-pyrite argillic-style alteration assemblage is associated with both corridors. The Zone 2 Extension ore zones and associated alteration are considered synvolcanic based on crosscutting relationships and U-Pb geochronology and are interpreted as being the distal expression of an epizonal magmatic-hydrothermal system that is centered on the upper part of the synvolcanic Mooshla Intrusive Complex. The North and Westwood corridors consist of bimodal-felsic Au-rich VMS-type mineralization and alteration produced by the convective circulation of modified seawater that included a magmatic contribution from the coeval epizonal Zone 2 Extension magmatic-hydrothermal system. The Westwood Au deposit represents one of the very few documented examples of an Archean magmatic-hydrothermal system—or at least of such systems formed in a subaqueous environment. The study of the Westwood deposit resulted in a better understanding of the critical role of magmatic fluid input toward the formation of Archean epizonal intrusion-related Au ± Cu and seafloor/subseafloor Au-rich VMS-type mineralization.


1976 ◽  
Vol 13 (6) ◽  
pp. 737-748 ◽  
Author(s):  
Manfred M. Kehlenbeck

In the de Courcey – Smiley Lakes Area, the boundary between the Quetico and Wabigoon Belts is expressed by a sequence of pelitic to semi-pelitic schists and gneisses. At the present level of erosion, these metasedimentary rocks are in contact with granodioritic gneisses, granites, and pegmatites, which are exposed to the south.To the north of this area, regional metamorphism of volcanic and sedimentary rocks has resulted in greenschist facies assemblages, which characterize the Wabigoon Belt in general. In the boundary zone, the metamorphic grade increases southward toward de Courcey and Smiley Lakes.Formation of three distinct foliation surfaces was accompanied by syn-tectonic as well as post-tectonic recrystallization, producing polymetamorphic schists.In the boundary zone, mineral assemblages comprising andalusile, sillimanite, cordierite, garnet. biotite, and muscovite form a facies series of the Abukuma type.The boundary between the Quetico and Wabigoon Belts in this area is a complex zone in which rocks of both belts have been reconstituted by multiple-phase metamorphism and partial melting.


1981 ◽  
Vol 18 (2) ◽  
pp. 323-329 ◽  
Author(s):  
A. Turek ◽  
T. E. Smith ◽  
C. H. Huang

The Gamitagama greenstone belt is situated to the south of the Archean Wawa belt of the Superior Province, and is about 50 km south of Wawa, Ontario. The Rb–Sr ages being reported here show that the metavolcanic and associated metasedimentary rocks are older than 2665 ± 45 Ma, which is a whole-rock isochron age of the pretectonic or syntectonic trondhjemitic plutons. The Gamitagama Lake complex, a calcalkalic differentiated and multiple diorite pluton, postdates the regional metamorphism and gives an age of 2645 ± 100 Ma. Potassic granitoid stocks, which are considered to be coeval with the Gamitagama Lake complex, define an isochron age of 2590 ± 80 Ma. The greenstone belt and associated intrusives are adjacent to the Southern batholith, a complex terrain of gneisses and migmatites, for which an isochron age of 2570 ± 90 Ma has been obtained. The radiometric ages reported here support the established stratigraphic sequence and prove that the rocks are Archean in age.


1990 ◽  
Vol 27 (4) ◽  
pp. 582-589 ◽  
Author(s):  
S. L. Jackson ◽  
R. H. Sutcliffe

Published U–Pb geochronological, geological, and petrochemical data suggest that there are late Archean ensialic greenstone belts (GB) (Michipicoten GB and possibly the northern Abitibi GB), ensimatic greenstone belts (southern Abitibi GB and Batchawana GB), and possibly a transitional ensimatic–ensialic greenstone belt (Swayze GB) in the central Superior Province. This lateral crustal variability may preclude simple correlation of the Michipicoten GB and its substrata, as exposed in the Kapuskasing Uplift, with that of the southern Abitibi GB. Furthermore, this lateral variability may have determined the locus of the Kapuskasing Uplift. Therefore, although the Kapuskasing Uplift provides a useful general crustal model, alternative models of crustal structure and tectonics for the southern Abitibi GB warrant examination.Thrusting of a juvenile, ensimatic southern Abitibi GB over a terrane containing evolved crust is consistent with (i) the structural style of the southern Abitibi GB; (ii) juvenile southern Abitibi GB metavolcanic rocks intruded by rocks having an isotopically evolved, older component; and (iii) Proterozoic extension that preserved low-grade metavolcanic rocks within the down-dropped Cobalt Embayment, which is bounded by higher grade terranes to the east and west.


1992 ◽  
Vol 29 (11) ◽  
pp. 2429-2444 ◽  
Author(s):  
Keith Benn ◽  
Edward W. Sawyer ◽  
Jean-Luc Bouchez

The late Archean Opatica granitoid-gneiss belt is situated within the northern Abitibi Subprovince, along the northern margin of the Abitibi greenstone belt. Approximately 200 km of structural section was mapped along three traverses within the previously unstudied Opatica belt. The earliest preserved structures are penetrative foliations and stretching and mineral lineations recording regional ductile shearing (D1). Late-D1 deformation was concentrated into kilometre-scale ductile fault zones, typically with L > S tectonite fabrics. Two families of lineations are associated with D1, indicating shearing both parallel and transverse to the east-northeast trend of the belt. Lineations trending east-northeast or northwest–southeast tend to be dominant within domains separated by major fault zones. In light of the abundant evidence for early north–south compression documented throughout southern Superior Province, including the Abitibi greenstone belt, D1 is interpreted in terms of mid-crustal thrusting, probably resulting in considerable crustal thickening. Movement-sense indicators suggest that thrusting was dominantly southward vergent. D2 deformation resulted in the development of vertical, regional-scale dextral and sinistral transcurrent fault zones and open to tight upright horizontal folds of D1 fabrics. In the context of late Archean orogenesis in southern Superior Province, the tectonic histories of the Abitibi and Opatica belts should not be considered separately. The Opatica belt may correlate with the present-day mid-crustal levels of the Abitibi greenstone belt, and to crystalline complexes within the Abitibi belt. It is suggested that the Abitibi Subprovince should be viewed, at the regional scale, as a dominantly southward-vergent orogenic belt. This work demonstrates that structural study of granitoid-gneiss belts adjacent to greenstone belts can shed considerable light on the regional structure and structural evolution of late Archean terranes.


1993 ◽  
Vol 30 (5) ◽  
pp. 985-996 ◽  
Author(s):  
Yuanming Pan ◽  
Michael E. Fleet

The tectono-metamorphic history of the late Archean (2800–2600 Ma) Hemlo – Heron Bay greenstone belt in the Superior Province has been delineated from textural relationships, mineral chemistry, and P–T paths in metapelites, cordierite–orthoamphibole rocks, and metabasites from the White River exploration property, Hemlo area, Ontario. An early low-temperature, medium-pressure metamorphism (about 500 °C and 6–6.5 kbar (1 kbar = 100 MPa)) is indicated by the occurrence of relict kyanite and staurolite porphyroblasts and zoned garnet porphyroblasts in metapelites and the presence of zoned calcic amphiboles in metabasites. This early metamorphism appears to have been coeval with the previously documented D1 deformation that is associated with, for example, low-angle thrusts. A second regional metamorphism predominates in the Hemlo – Heron Bay greenstone belt and is generally of relatively low grade, at about 510–530 °C and 3.2–3.5 kbar, over most of the study area and increases to medium grade (550–650 °C and 4–5 kbar) towards the southern margin with the Pukaskwa Gneissic Complex and along the central axis enclosing the Hemlo Shear Zone. The second regional metamorphism was contemporaneous with the D3 deformation and was probably related to plutonism. This type of polymetamorphism in the Hemlo – Heron Bay greenstone belt may be equivalent to those in Phanerozoic subduction complexes and therefore supports the arc–arc accretion model for the development of the southern Superior Province. Although the Hemlo – Heron Bay greenstone belt most likely represents a single tectonic environment (an oceanic island arc), the restricted occurrence of the relict kyanite and staurolite indicates that the central portion of this Archean greenstone belt probably was at a deeper crustal level at the time of the first metamorphic event.


2017 ◽  
Vol 54 (11) ◽  
pp. 1165-1178 ◽  
Author(s):  
Nabil A. Shawwa ◽  
Robert P. Raeside ◽  
David W.A. McMullin ◽  
Christopher R.M. McFarlane

At Kellys Mountain, Cape Breton Island, Nova Scotia, the late Neoproterozoic Glen Tosh formation (a low-grade metapsammite–metapelite unit of the George River Metamorphic Suite) has been intruded by diorite, granodiorite, and granite plutons, and the diorite hosts a narrow contact metamorphic aureole. New mapping and sampling in the contact aureole reveals that the metasedimentary rocks have reached amphibolite-facies metamorphism resulting in the development of neoformed biotite, muscovite, cordierite, ilmenite, garnet, andalusite, sillimanite, monazite, and spinel within the meta-pelite, a mineral assemblage also found in the Kellys Mountain Gneiss as a result of low-pressure regional metamorphism. Neoformed minerals and the disappearance of foliation defines a contact metamorphic aureole within 300 m of the pluton contacts. Petrographic and microprobe analyses of equilibrium assemblages in metapelitic units of the contact aureole yielded metamorphic pressures of 250 MPa, implying an intrusion depth of ∼9 km, with temperatures ranging from 365 to 590 °C. The presence of earlier-formed andalusite and garnet indicates the rocks may have initially undergone a low-pressure regional metamorphic event prior to contact metamorphism. Monazite in the contact aureole was dated using in-situ U–Pb methods and yielded an age of 480.9 ± 3.7 Ma, interpreted as the time of formation of the contact metamorphic aureole.


2021 ◽  
Vol 9 ◽  
Author(s):  
S.C. Fabbri ◽  
C. Affentranger ◽  
S. Krastel ◽  
K. Lindhorst ◽  
M. Wessels ◽  
...  

Probabilistic seismic hazard assessments are primarily based on instrumentally recorded and historically documented earthquakes. For the northern part of the European Alpine Arc, slow crustal deformation results in low earthquake recurrence rates and brings up the necessity to extend our perspective beyond the existing earthquake catalog. The overdeepened basin of Lake Constance (Austria, Germany, and Switzerland), located within the North-Alpine Molasse Basin, is investigated as an ideal (neo-) tectonic archive. The lake is surrounded by major tectonic structures and constrained via the North Alpine Front in the South, the Jura fold-and-thrust belt in the West, and the Hegau-Lake Constance Graben System in the North. Several fault zones reach Lake Constance such as the St. Gallen Fault Zone, a reactivated basement-rooted normal fault, active during several phases from the Permo-Carboniferous to the Mesozoic. To extend the catalog of potentially active fault zones, we compiled an extensive 445 km of multi-channel reflection seismic data in 2017, complementing a moderate-size GI-airgun survey from 2016. The two datasets reveal the complete overdeepened Quaternary trough and its sedimentary infill and the upper part of the Miocene Molasse bedrock. They additionally complement existing seismic vintages that investigated the mass-transport deposit chronology and Mesozoic fault structures. The compilation of 2D seismic data allowed investigating the seismic stratigraphy of the Quaternary infill and its underlying bedrock of Lake Constance, shaped by multiple glaciations. The 2D seismic sections revealed 154 fault indications in the Obersee Basin and 39 fault indications in the Untersee Basin. Their interpretative linkage results in 23 and five major fault planes, respectively. One of the major fault planes, traceable to Cenozoic bedrock, is associated with a prominent offset of the lake bottom on the multibeam bathymetric map. Across this area, high-resolution single channel data was acquired and a transect of five short cores was retrieved displaying significant sediment thickness changes across the seismically mapped fault trace with a surface-rupture related turbidite, all indicating repeated activity of a likely seismogenic strike-slip fault with a normal faulting component. We interpret this fault as northward continuation of the St. Gallen Fault Zone, previously described onshore on 3D seismic data.


2002 ◽  
Vol 139 (1) ◽  
pp. 73-87 ◽  
Author(s):  
P. M. EVINS ◽  
K. LAAJOKI

The Central Lapland Greenstone belt comprises rift-related metavolcanic and metasedimentary rocks representing one of the largest supracrustal belts in the Baltic Shield. The Sodankylä area in the central part of the belt represents a complex thrust duplex within a nappe overlying Belomorian Archaean basement and autocthonous Luirojoki calc-silicate rocks. Here, an early D1 schistosity is axial planar to at least three coaxial generations of southward-verging, subhorizontal, E–W-plunging D1 folds associated with major southwards thrusting. D2 is represented by broad, map-scale, upright, NE-trending folds in the south and crenulations in the north. Staurolite-grade metamorphism represented by post-tectonic andalusite + staurolite + kyanite assemblages occurred after D2 folding. Later D3 deformation was limited to local NW-trending folds and sinistral faults. The internal nappe-like structure of the Central Lapland Greenstone belt suggests that it represents the foreland of a large collisional complex cored by the Lapland Granulite belt.


1985 ◽  
Vol 49 (352) ◽  
pp. 357-364 ◽  
Author(s):  
R. Offler ◽  
E. Prendergast

AbstractA study of low-grade metamorphism in late Silurian to early Carboniferous rocks in the North Hill End Synclinorium and adjacent anticlinoria has been made by the determination of illite crystallinity and bo values of K-white mica in eighty slates and phyllites. Illite crystallinity values vary from 0.40 Δ°2θ on the Molong Anticlinorium to 0.12 Δ°2θ within the axis of the synclinorium, suggesting anchizonal to epizonal metamorphic conditions. This is in agreement with previous observations on Ca-Al-hydrosilicate assemblages which indicated a change from prehnite-pumpellyite facies in the anticlinoria adjacent to the synclinorium to middle greenschist facies in the axis. Local variations in crystallinity are attributed to variation in ak+ in fluids migrating along cleavage zones.The mean bo value obtained from the pelites is 9.017 Å (σn = 0.008; n = 80) which is in close agreement with that obtained from part of the adjacent Capertee Anticlinorium (x̄ = 9.019 Å; σn = 0.007; n = 52). However, ‘t’ tests indicate that two bo populations are present in the synclinorium (x̄ = 9.019 and 9.022 Å), with the lower values concentrated in the southern portion of this structure. The two populations are considered to be the result of slightly different metamorphic conditions prevailing during the deformation of the rocks in the synclinorium. A higher geothermal gradient affecting rocks giving the lower bo values is attributed to the presence of granitoids at shallower depths than elsewhere in the synclinorium.


Sign in / Sign up

Export Citation Format

Share Document