Bioavailability of sediment-associated mercury toHexageniamayflies in a contaminated floodplain river
We examined the bioavailability of mercury in sediments from the contaminated Sudbury River (Massachusetts, U.S.A.). Mayfly nymphs (Hexagenia) were exposed in four 21-day bioaccumulation tests to contaminated and reference sediments (treatments) from reservoirs, flowing reaches, palustrine wetlands, and a riverine lake. Mean total mercury (ΣHg) ranged from 880 to 22 059 ng·g dry weight-1in contaminated sediments and from 90 to 272 ng·g-1in reference sediments. Mean final concentrations of methyl mercury (MeHg) in test water were greatest (8-47 ng Hg·L-1) in treatments with contaminated wetland sediments, which had mean ΣHg ranging from 1200 to 2562 ng·g-1. In mayflies, final mean concentrations of MeHg were highest in treatments with contaminated wetland sediments (122-183 ng Hg·g-1), intermediate in treatments with contaminated sediments from reservoirs, flowing reaches, and a riverine lake (75-127 ng Hg·g-1), and lowest in treatments with reference sediments (32-41 ng Hg·g-1). We conclude that the potential entry of MeHg into the benthic food chain was greater in contaminated palustrine wetlands than in the contaminated reservoirs, which had the most contaminated sediments.