Ocean Migrations of Pacific Salmon

1964 ◽  
Vol 21 (5) ◽  
pp. 1227-1244 ◽  
Author(s):  
Ferris Neave

Sockeye salmon (Oncorhynchus nerka), pink salmon (O. gorbuscha), and chum salmon (O. keta) commonly return to their places of origin from distant high-seas areas. Maturing fish closely associated at high-seas localities travel in many different directions to their respective destinations. They also travel from many different high-seas localities to a common coastal area. Prior to their return to inshore waters, pink salmon perform ocean journeys which are associated with changes in temperature and which do not necessarily represent a direct approach to a spawning area. The ocean journeys of both juvenile and maturing salmon are largely independent of currents. Homing is not thought to be commonly accomplished by random or near-random ocean travel or by extensive searching of coastlines. It is suggested that ability to set a compass course, using a celestial feature, is insufficient to account for the indicated performance and that some form of bico-ordinate navigation may be required.

Trudy VNIRO ◽  
2020 ◽  
Vol 179 ◽  
pp. 90-102
Author(s):  
M. N. Gorokhov ◽  
V. V. Volobuev ◽  
I. S. Golovanov

There are two main areas of pacific salmon fishing in the Magadan region: Shelikhova Gulf and Tauiskaya Bay. The main fishing species is pink salmon in the region. Its share of total salmon catch by odd-year returns reaches 85 %. Data on the dynamics of escapement to the spawning grounds of pink salmon of the Shelikhova Gulf and Tauiskaya Bay are presented. The displacement of the level of spawning returns of pink salmon into the Shelihova Gulf with the simultaneous reduction of its returns to the Tauiskaya Bay is shown. Data on the dynamics of the fishing indicators of pink salmon for the two main fishing areas are provided. The Tauiskaya Bay as the main pink salmon fishery area loses its importance is shown. Graphical data on the escapement of producers pink salmon to the spawning grounds are presented and the optimal values of spawning escapements are estimated. Chum salmon is the second largest and most fishing species. Information on the dynamics of the number of returns, catch and escapement to the spawning grounds of chum salmon is given. The indicators of escapement to the spawning areas and their compliance with the optimal passes of salmon producers are analyzed. The issues of the dynamics of returns number, catch and the escapement to the spawning grounds of coho salmon producers are considered. The level of the escapement to the spawning areas is shown and the ratio of actual to optimal values of passes is estimated. The role of coho salmon as an object of industrial fishing and amateur fishing is shown. The extent of fishing press on individual groups of salmon populations is discussed. It is concluded that it is necessary to remove the main salmon fishery from the Tauiskaya Bay to the Shelikhova Gulf.


2011 ◽  
Vol 68 (6) ◽  
pp. 1122-1130 ◽  
Author(s):  
James R. Irvine ◽  
Masa-aki Fukuwaka

Abstract Irvine, J. R., and Fukuwaka, M. 2011. Pacific salmon abundance trends and climate change. – ICES Journal of Marine Science, 68: 1122–1130. Understanding reasons for historical patterns in salmon abundance could help anticipate future climate-related changes. Recent salmon abundance in the northern North Pacific Ocean, as indexed by commercial catches, has been among the highest on record, with no indication of decline; the 2009 catch was the highest to date. Although the North Pacific Ocean continues to produce large quantities of Pacific salmon, temporal abundance patterns vary among species and areas. Currently, pink and chum salmon are very abundant overall and Chinook and coho salmon are less abundant than they were previously, whereas sockeye salmon abundance varies among areas. Analyses confirm climate-related shifts in abundance, associated with reported ecosystem regime shifts in approximately 1947, 1977, and 1989. We found little evidence to support a major shift after 1989. From 1990, generally favourable climate-related marine conditions in the western North Pacific Ocean, as well as expanding hatchery operations and improving hatchery technologies, are increasing abundances of chum and pink salmon. In the eastern North Pacific Ocean, climate-related changes are apparently playing a role in increasing chum and pink salmon abundances and declining numbers of coho and Chinook salmon.


2000 ◽  
Vol 57 (6) ◽  
pp. 1252-1257 ◽  
Author(s):  
Yolanda Morbey

Protandry, the earlier arrival of males to the spawning grounds than females, has been reported in several studies of Pacific salmon (Oncorhynchus spp.). However, the reasons for protandry in salmon are poorly understood and little is known about how protandry varies among and within populations. In this study, protandry was quantified in a total of 105 years using gender-specific timing data from seven populations (one for pink salmon (O. gorbuscha), three for coho salmon (O. kisutch), two for sockeye salmon (O. nerka), and one for chinook salmon (O. tshawytscha)). Using a novel statistical procedure, protandry was found to be significant in 90% of the years and in all populations. Protandry may be part of the males' strategy to maximize mating opportunities and may facilitate mate choice by females.


1971 ◽  
Vol 28 (4) ◽  
pp. 485-490 ◽  
Author(s):  
J. R. McBride ◽  
A. P. van Overbeeke

A study was made of the histological changes occurring in the skin, stomach, liver, pancreas and kidney of adult gonadectomized male and female sockeye salmon in response to hormone treatments. The males received 11-ketotestosterone, 17α-methyltestosterone or cortisol for 4 or 7 weeks, and the females received estradiol, estradiol cypionate, or cortisol for 8 weeks.In the males, androgen injection evoked a highly significant increase in the thickness of the epidermis, a marked atrophy of the stomach, and a degeneration in the liver and kidney. In the pancreas, the exocrine portion showed characteristics of cytolysis in the acini, whereas the islets of Langerhans were hypertrophied. These changes were generally more pronounced after 7 weeks than after 4 but, in the skin, no further increase in the thickening of the epidermis was noted after the 4th week of treatment. No differences between responses of these tissues to 11-ketotestosterone and 17α-methyltestosterosne were detected.Estrogen administration in the females evoked similar, albeit weaker, responses in the skin, stomach, pancreas, and kidney than those recorded in the androgen-treated males. The liver of the females exhibited the characteristics of a hyperactive organ, which probably reflects estrogen-induced vitellogenesis.The effects of cortisol were similar in both sexes: little, if any, change was noted in the skin; atrophy or degeneration was observed in the stomach, liver, kidney, and in the exocrine portion of the pancreas, and the islets of Langerhans were hypertrophied. The cortisol-induced alterations were not, however, as pronounced as those noted in either the androgen- or estrogen-treated fish.These changes are discussed in relation to the changes observed in normal sexually maturing and reproducing Pacific salmon.


1982 ◽  
Vol 39 (6) ◽  
pp. 904-913 ◽  
Author(s):  
Randall M. Peterman

Data on sampling variability in smolt abundance for Babine Lake sockeye salmon (Oncorhynchus nerka) are combined with a previous analysis to calculate a more accurate estimate of the degree of nonlinearity in the relation between smolts and adults. Results indicate significant within-stock nonlinear mortality, large variability in mortality which tends to obscure any smolt-to-adult relation, or both. Analysis of age structure data identifies the first 15 mo of marine life as the period when most of this nonlinear or relation-masking mortality occurs. I also calculate the amount of smolt measurement error below which other salmon stocks are classed as having nonlinear marine survival. A distinct separation between even and odd brood year marine survival of Babine Lake sockeye suggests interactions with pink salmon. Juvenile pink salmon (O. gorbuscha) abundances correlate positively with residuals in Babine Lake sockeye survival for the same seaward migration year. This suggests a depensatory mortality effect which occurs later in the marine life stage than the possible within-population compensatory effect. Depensation is plausible because the size of pink fry equals that of sockeye smolts by August in coastal waters, permitting mutual swamping of predators. The paper concludes with implications for further enhancement.Key words: density dependence, marine survival, measurement error, enhancement, depensation, nonlinear, variability


1957 ◽  
Vol 14 (6) ◽  
pp. 815-830 ◽  
Author(s):  
W. S. Hoar ◽  
M. H. A. Keenleyside ◽  
R. G. Goodall

When given a choice between light and dark areas, schools of chum or pink salmon fry remain in the light, sockeye fry prefer the dark and coho fry show no marked preference for either. Newly emerged sockeye fry are the most strongly photonegative, remaining mostly under stones. Older sockeye fry move more into the light. Sockeye and coho smolts stay in the dark more than sockeye and coho underyearlings. Territorial and "escape" behaviour by fish in the experimental apparatus may obscure these reactions to light. Soon after emerging from the gravel, pink fry swim near the surface under low light intensity and retreat to deeper water in brighter light. Older pink fry seem indifferent to changing light. Recently emerged chum salmon fry do not respond in this way to changing illumination, although older fry tend to swim closer to the surface. This difference between pink and chum salmon fry may be related to differences in schooling behaviour and alarm responses of the two species.


1962 ◽  
Vol 19 (4) ◽  
pp. 561-589 ◽  
Author(s):  
Robert R. Parker

A conceptual model representing natural marine mortality rates of Pacific salmon is developed. Ocean mortality rate (q) is taken as the base to which coastal mortality rates of juveniles (c) and of adults (k) are additive factors. The effect of marking is taken as a multiplicative factor (m) of the instantaneous rate (i) where i = q + c + k. Together with time these values are incorporated into the balanced equation[Formula: see text]where N0 denotes the population entering the sea and R1, R2, R3 denote the returns at succeeding times of maturity. The locus of c + k = f(q) is used to graphically depict all possible combinations of c + k and q within the limits [q, c + k = 0]. Intersections of loci are taken as estimates of values of q and c + k which satisfy two sets of data. Available data for sockeye salmon (O. nerka) from Cultus Lake, Chilko Lake and Hooknose Creek, British Columbia, Karluk River and Bare Lake, Alaska, and Dalnee River, Kamchatka, pink salmon (O. gorbuscha) and chum salmon (O. keta) from Hooknose Creek, chinook salmon (O. tshawytscha) from the coast of Southeast Alaska and coho (O. kisutch) from the Eel River, California, are utilized. It is concluded that ocean mortality is relatively constant, of the order of magnitude q = 0. 32 or S = 73% annually. A juvenile coastal mortality factor (c) apparently exists and is characteristic of the species and race through the media of size of migrants, time spent in the costal area, and geography. An adult coastal factor (k) may exist but is of negligible influence on the total mortality rate. While the data utilized collectively may be considered as extensive, serious defects in sampling errors and undefined variability were encountered. It is doubted that mortality rates can be more accurately defined from any repetition of experiments used, hence a more direct approach is indicated for solution of this problem.


2020 ◽  
Vol 77 (6) ◽  
pp. 943-949 ◽  
Author(s):  
Brendan Connors ◽  
Michael J. Malick ◽  
Gregory T. Ruggerone ◽  
Pete Rand ◽  
Milo Adkison ◽  
...  

Pacific salmon productivity is influenced by ocean conditions and interspecific interactions, yet their combined effects are poorly understood. Using data from 47 North American sockeye salmon (Oncorhynchus nerka) populations, we present evidence that the magnitude and direction of climate and competition effects vary over large spatial scales. In the south, a warm ocean and abundant salmon competitors combined to strongly reduce sockeye productivity, whereas in the north, a warm ocean substantially increased productivity and offset the negative effects of competition at sea. From 2005 to 2015, the approximately 82 million adult pink salmon (Oncorhynchus gorbuscha) produced annually from hatcheries were estimated to have reduced the productivity of southern sockeye salmon by ∼15%, on average. In contrast, for sockeye at the northwestern end of their range, the same level of hatchery production was predicted to have reduced the positive effects of a warming ocean by ∼50% (from a ∼10% to a ∼5% increase in productivity, on average). These findings reveal spatially dependent effects of climate and competition on sockeye productivity and highlight the need for international discussions about large-scale hatchery production.


2006 ◽  
Vol 120 (2) ◽  
pp. 199
Author(s):  
Alexandra Morton ◽  
Rob Williams

Recent recurring infestations of Sea Lice, Lepeophtheirus salmonis, on juvenile Pacific salmon (Oncorhynchus spp.) and subsequent annual declines of these stocks have made it imperative to identify the source of Sea Lice. While several studies now identify farm salmon populations as sources of Sea Louse larvae, it is unclear to what extent wild salmonid hosts also contribute Sea Lice. We measured Sea Louse numbers on adult Pink Salmon (Oncorhynchus gorbuscha) migrating inshore. We also measured Sea Louse numbers on wild juvenile Pink and Chum salmon (Oncorhynchus keta) migrating to sea before the adults returned, and as the two age cohorts mingled. Adult Pink Salmon carried an average of 9.89 (SE 0.90) gravid lice per fish, and thus were capable of infecting the adjacent juveniles. Salinity and temperature remained favourable to Sea Louse reproduction throughout the study. However, all accepted measures of Sea Louse infestation failed to show significant increase on the juvenile salmon, either in overall abundance of Sea Lice or of the initial infective-stage juvenile lice, while the adult wild salmon were present in the study area. This study suggests that even during periods of peak interaction, wild adult salmon are not the primary source of the recent and unprecedented infestations of Sea Lice on juvenile Pacific Pink and Chum salmon in the inshore waters of British Columbia.


Sign in / Sign up

Export Citation Format

Share Document