In Vitro Maintenance of Amoebocytes from the American Oyster (Crassostrea virginica)

1979 ◽  
Vol 36 (4) ◽  
pp. 461-467 ◽  
Author(s):  
Frank Brewster ◽  
Bruce L. Nicholson

Explant and monolayer cell cultures were initiated from oyster heart and embryonic tissue and maintained for periods of a few days to 6 mo depending on the type of tissue and the culture medium. A pH of 7.0–7.3 and a temperature of 20 °C were optimum. Vertebrate cell culture media prepared in a marine saline and supplemented with fetal bovine serum and protein digests provided a suitable basal medium. Supplementation of the basal medium with oyster hemolymph or extracts of oyster tissue markedly prolonged cell maintenance. Explant cultures of heart tissue with the subsequent outward migration of individual cells were most easily initiated and maintained for periods up to 6 mo. Although several cell types were observed, actively motile, granular amoebocytes predominated. No mitotic cells were observed even following exposure to a variety of mitogens. Cultures initiated from disaggregated larvae did yield actively dividing cells. Key words: oyster, cell culture, amoebocytes

2010 ◽  
Vol 24 (4) ◽  
pp. 1053-1063 ◽  
Author(s):  
J. van der Valk ◽  
D. Brunner ◽  
K. De Smet ◽  
Å. Fex Svenningsen ◽  
P. Honegger ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Ana Lúcia Vargas Arigony ◽  
Iuri Marques de Oliveira ◽  
Miriana Machado ◽  
Diana Lilian Bordin ◽  
Lothar Bergter ◽  
...  

Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic thein vivoenvironment, providingin vitromodels used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previousin vitroexperiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5–10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed.


2018 ◽  
Vol 19 (11) ◽  
pp. 3538 ◽  
Author(s):  
Brandon Lehrich ◽  
Yaxuan Liang ◽  
Pooya Khosravi ◽  
Howard Federoff ◽  
Massimo Fiandaca

It is known that culture media (CM) promotes cellular growth, adhesion, and protects explanted primary brain cells from in vitro stresses. The fetal bovine serum (FBS) supplement used in most CM, however, contains significant quantities of extracellular vesicles (EVs) that confound quantitative and qualitative analyses from the EVs produced by the cultured cells. We quantitatively tested the ability of common FBS EV-depletion protocols to remove exogenous EVs from FBS-supplemented CM and evaluated the influence such methods have on primary astrocyte culture growth and viability. We assessed two methodologies utilized for FBS EV removal prior to adding to CM: (1) an 18-h ultracentrifugation (UC); and (2) a commercial EV-depleted FBS (Exo-FBS™). Our analysis demonstrated that Exo-FBS™ CM provided the largest depletion (75%) of total FBS EVs, while still providing 6.92 × 109 ± 1.39 × 108 EVs/mL. In addition, both UC and Exo-FBS™ CM resulted in poor primary astrocyte cell growth and viability in culture. The two common FBS EV-depletion methods investigated, therefore, not only contaminate in vitro primary cell-derived EV analyses, but also provide a suboptimal environment for primary astrocyte cell growth and viability. It appears likely that future CM optimization, using a serum-free alternative, might be required to advance analyses of cell-specific EVs isolated in vitro.


2017 ◽  
Vol 312 (2) ◽  
pp. F284-F296 ◽  
Author(s):  
David R. Emlet ◽  
Nuria Pastor-Soler ◽  
Allison Marciszyn ◽  
Xiaoyan Wen ◽  
Hernando Gomez ◽  
...  

We have characterized the expression and secretion of the acute kidney injury (AKI) biomarkers insulin-like growth factor binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in human kidney epithelial cells in primary cell culture and tissue. We established cell culture model systems of primary kidney cells of proximal and distal tubule origin and observed that both proteins are indeed expressed and secreted in both tubule cell types in vitro. However, TIMP-2 is both expressed and secreted preferentially by cells of distal tubule origin, while IGFBP7 is equally expressed across tubule cell types yet preferentially secreted by cells of proximal tubule origin. In human kidney tissue, strong staining of IGFBP7 was seen in the luminal brush-border region of a subset of proximal tubule cells, and TIMP-2 stained intracellularly in distal tubules. Additionally, while some tubular colocalization of both biomarkers was identified with the injury markers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin, both biomarkers could also be seen alone, suggesting the possibility for differential mechanistic and/or temporal profiles of regulation of these early AKI biomarkers from known markers of injury. Last, an in vitro model of ischemia-reperfusion demonstrated enhancement of secretion of both markers early after reperfusion. This work provides a rationale for further investigation of these markers for their potential role in the pathogenesis of acute kidney injury.


2017 ◽  
Vol 3 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Bernhard Hiebl ◽  
Sinem Peters ◽  
Ole Gemeinhardt ◽  
Stefan M. Niehues ◽  
Friedrich Jung

1990 ◽  
Vol 259 (6) ◽  
pp. L415-L425 ◽  
Author(s):  
P. E. Roberts ◽  
D. M. Phillips ◽  
J. P. Mather

A novel epithelial cell from normal neonatal rat lung has been isolated, established, and maintained for multiple passages in the absence of serum, without undergoing crisis or senescence. By careful manipulation of the nutrition/hormonal microenvironment, we have been able to select, from a heterogeneous population, a single epithelial cell type that can maintain highly differentiated features in vitro. This cell type has characteristics of bronchiolar epithelial cells. A clonal line, RL-65, has been selected and observed for greater than 2 yr in continuous culture. It has been characterized by ultrastructural, morphological, and biochemical criteria. The basal medium for this cell line is Ham's F12/Dulbecco's modified Eagle's (DME) medium plus insulin (1 micrograms/ml), human transferrin (10 micrograms/ml), ethanolamine (10(-4) M), phosphoethanolamine (10(-4) M), selenium (2.5 x 10(-8) M), hydrocortisone (2.5 x 10(-7) M), and forskolin (5 microM). The addition of 150 micrograms/ml of bovine pituitary extract to the defined basal medium stimulates a greater than 10-fold increase in cell number and a 50- to 100-fold increase in thymidine incorporation. The addition of retinoic acid results in further enhancement of cell growth and complete inhibition of keratinization. We have demonstrated a strategy that may be applicable to isolating other cell types from the lung and maintaining their differentiated characteristics for long-term culture in vitro. Such a culture system promises to be a useful model in which to study cellular events associated with differentiation and proliferation in the lung and to better understand the molecular mechanisms involved in these events.


2021 ◽  
Vol 22 (18) ◽  
pp. 9896
Author(s):  
Eugenia Romano ◽  
Paolo Antonio Netti ◽  
Enza Torino

In recent decades, endogenous nanocarrier-exosomes have received considerable scientific interest as drug delivery systems. The unique proteo-lipid architecture allows the crossing of various natural barriers and protects exosomes cargo from degradation in the bloodstream. However, the presence of this bilayer membrane as well as their endogenous content make loading of exogenous molecules challenging. In the present work, we will investigate how to promote the manipulation of vesicles curvature by a high-pressure microfluidic system as a ground-breaking method for exosomes encapsulation. Exosomes isolated from Uppsala 87 Malignant Glioma (U87-MG) cell culture media were characterized before and after the treatment with high-pressure homogenization. Once their structural and biological stability were validated, we applied this novel method for the encapsulation in the lipidic exosomal bilayer of the chemotherapeutic Irinotecan HCl Trihydrate-CPT 11. Finally, we performed in vitro preliminary test to validate the nanobiointeraction of exosomes, uptake mechanisms, and cytotoxic effect in cell culture model.


Genetika ◽  
2006 ◽  
Vol 38 (2) ◽  
pp. 129-136
Author(s):  
Velichka Rodeva ◽  
Stanislava Grozeva ◽  
Velichka Todorova

Callusogenesis and regeneration ability of cotyledon and hypocotyl explants from three Bulgarian pepper varieties in MS basal medium supplemented with l-3mg/l BAP. l.0mg/1 IAA and 0.5mg/l GA3 was studied. In the different variants of culture medium was registered high level of callusogenesis and organogenesis in both type of explants from the all varieties. The highest percentage of plant-regenerants is established in cotyledon explants (from 3.3 to 18.3) in variant 3 of the culture medium containing 3mg/l BA. In the process of micropropagation by stem explants of the same studied pepper varieties the addition of the vitamins C. B12. Casein hydrolysate and Ferulic acid had a stimulation effect on the plant growth in height and rooting. In result of anther cultivation from three pepper varieties and four breeding lines the highest percentage of embryo structure formation was registered in varieties Albena and Strjama (12.0 and 13.8 respectively). The Bulgarian peppers are recalcitrant and their in vitro answer is different depending from the explants type, genotype and the culture media composition.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Yupi ISNAINI ◽  
Titien Ngatinem Praptosuwiryo

Abstract. Isnaini Y, Praptosuwiryo TNg. 2020. In vitro spore germination and early gametophyte development of Cibotium barometz (L.) J. Sm. in different media. Biodiversitas 21: 5373-5381. Cibotium barometz (L.) J. Sm. is known as the golden chicken fern and included in Appendix II of CITES. It is an important export commodity for traditional and modern medicine. Globally, populations of this species are under significant pressure due to overexploitation in the wild. In vitro culture is one of the technologies used for ex-situ propagation and conservation of rare and endangered ferns and lycophytes. This study’s objectives were: (i) to observe in vitro spore germination and early gametophyte development of C. barometz, and (ii) to determine the best culture medium for rapid spore germination and early development of the gametophytes. The sterilized spores were sown in half-strength Murashige & Skoog (½MS) basal medium supplemented with combinations of 6-Benzylaminopurine (BAP) and α-Naphthalene acetic acid (NAA). A factorial combination of four BAP concentrations (0, 2, 4, and 6 mg L-1) with four concentrations of NAA (0; 0.01; 0.03 and 0.05 mg L-1) created 16 treatments replicated in a Completely Randomized Design. Spore germination of C. barometz was observed to be Vittaria-type, and its prothallial development was Drynaria-type. Spore germination started 7-14 days after sowing. Young heart-shape gametophytes consisting of 110-240 cells were formed in 45-61 days after sowing. The two best spore culture media for rapid spore germination and development of C. barometz gametophytes were ½ MS with or without 2 mg L-1 BAP.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3667
Author(s):  
Yasuyuki Fujii ◽  
Yoshitomo Suhara ◽  
Yusuke Sukikara ◽  
Tomohiro Teshima ◽  
Yoshihisa Hirota ◽  
...  

Flavan-3-ols (FLs), specifically catechin and its oligomer B-type procyanidins, are suggested to potently bind to bovine serum albumin (BSA). We examined the interaction between BSA and FLs by fluorescence quenching and found the following order of binding activities to BSA: cinnamtannin A2 (A2; tetramer) > procyanidin C1 (C1; trimer) ≈ procyanidin B2 (B2, dimer) > (−)epicatechin (EC, monomer). Docking simulations between BSA and each compound at the binding site showed that the calculated binding energies were consistent with the results of our experimental assay. FLs exerted cytotoxicity at 1000 μg/mL in F11 cell culture with fetal bovine serum containing BSA. In culture containing serum-free medium, FLs exhibited significant cell proliferation at 10−4 μg/mL and cytotoxicity was observed at concentrations greater than 10 μg/mL. Results of this study suggest that interactions between polyphenols and BSA should be taken into account when evaluating procyanidin in an in vitro cell culture system.


Sign in / Sign up

Export Citation Format

Share Document