Relationships between Suspended Particulate Matter and Sinking Flux along a Trophic Gradient and Implications for the Fate of Planktonic Primary Production

1994 ◽  
Vol 51 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Stephen B. Baines ◽  
Michael L. Pace

We measured water column variables and the sinking flux of C, N, P and pigments in 15 lakes which varied in algal biomass to determine (1) the relationship between sinking flux and suspended particulate concentrations, (2) if sinking rates of particles changed as a function of trophic status, and (3) the importance of sinking as a fate for phytoplankton production along a trophic gradient. Sinking flux was well predicted by metalimnetic algal pigment concentrations (chlorophyll + phaeopigments) and epilimnetic C:N ratios (R2 = 83–97%). Sinking rates of algal pigments were not significantly higher in lakes with higher chlorophyll concentrations. Predictions based on observed C sinking fluxes, water column chlorophyll, and an empirical relationship between primary production and chlorophyll concur with published observations in suggesting a slight negative relationship between production and the ratio of sinking flux to production. Our results challenge the notion that plankton communities in oligotrophic lakes are more efficient than those in eutrophic lakes in the retention of nutrients within the water column.


1984 ◽  
Vol 41 (4) ◽  
pp. 591-604 ◽  
Author(s):  
R. E. Hecky ◽  
S. J. Guildford

The primary productivity of seven regions of Southern Indian Lake and neighboring Wood Lake was measured during open-water seasons from 1974 to 1978. The lake had regional differences in chlorophyll concentrations and daily rates of integral primary production in 1974 and 1975 prior to impoundment of the lake. Regions receiving Churchill River flow tended to have higher chlorophyll concentrations and production rates than those regions marginal to the flow. Impoundment of the lake resulted in higher efficiencies of primary production in all regions, as indicated by higher light-saturated rates of carbon uptake per unit chlorophyll and by higher initial slopes of the hyperbolic light response relation of the phytoplankton. Many large basins of the lake had light penetration reduced by high concentrations of suspended sediment from eroding shorelines, while other areas had relatively unchanged light penetration. The increased efficiency of carbon fixation per unit chlorophyll resulted in higher rates of integral production in those regions where light penetration was not greatly affected. Daily rates of integral primary production in lake regions where light penetration had decreased markedly were not significantly different after impoundment because efficiencies of light utilization were higher. Comparison of the mean water column light intensities for those turbid regions with the values of Ik (light intensity at the onset of light saturation) for phytoplankton indicated that these turbid regions are now light deficient on average. Phosphorus deficiency, as indicated by alkaline phosphatase activity per unit ATP, which was present before impoundment, has been eliminated as the mean water column light intensity declined below 5 mEinsteins∙m−2∙min−1. The light environment of a new reservoir can be a significant determinant of integral production, and predicting the consequences of impoundment on phytoplankton production requires accurate prediction of the light environment.



2017 ◽  
Vol 5 (1) ◽  
pp. 49
Author(s):  
Marlon A. Mojica ◽  
Virgilio M. Tatlonghari

This paper examines the empirical relationship between unemployment and real output in the Philippines utilizing quarterly data from the Labor Force Survey by the Philippine Statistics Authority for the period from 1990-2014. The study employed three variants of Okun’s Law – the “gap” approach, the “first difference” approach, and a dynamic approach.   Findings show that the Okun’s coefficients based on the gap approach are consistent with the theoretical expectation of a negative relationship.  In the ARDL model, labor force participation rate and trade openness were found to be significantly related to unemployment. The result of dummy variable test revealed the presence of structural break following the re-definition of unemployment in the Philippines in 2005. Recursive least squares and rolling regressions show evidence of parameter instability in several sub-periods.



Author(s):  
Akihiro Shiomoto ◽  
Yushi Kamuro

Abstract In Saroma-ko Lagoon, where scallop aquaculture is a thriving commercial activity, monitoring primary production is essential for determining the amount of scallops that can be farmed. Using the primary production data obtained so far, we calculated Ψ, an index of water-column light utilization efficiency, and clarified its seasonal variation. Ψ tended to be lower in the spring bloom season (February–April), and higher in the late autumn to winter (October–December). Low chlorophyll-normalized production, an index of growth rate, resulted in lower values, while low daily irradiance resulted in higher values. The values of Ψ from our study had a range of 0.05–1.42 gC gChl-a−1 mol photons−1 m2 (N = 56). These values were within the previously reported range of 0.07–1.92 (gC gChl-a−1 mol photons−1 m2) for seawater and fresh water worldwide. Therefore, it is likely that Ψ varies from 0.05–2 gC gChl-a−1 mol photons−1 m2, being affected by conditions of phytoplankton growth and sunlight intensity, regardless of whether samples are collected from seawater or fresh water. Using the median Ψ value of 0.45 gC gChl-a−1 mol photons−1 m2 obtained in this study, primary production was 0.3–3.5 times the actual production at Saroma-ko Lagoon. Using this method, primary production can be easily and constantly monitored, facilitating the sustainable development of scallop aquaculture.



1993 ◽  
Vol 50 (2) ◽  
pp. 282-289 ◽  
Author(s):  
Paul A. del Giorgio ◽  
Robert H. Peters

We analyzed published rates of algal photosynthesis and plankton community respiration to test the hypothesis that the ratio of planktonic primary production to community (P/R) varies systematically with lake trophy. Regression analyses show that algal production and plankton respiration are closely related to chlorophyll concentrations for lakes spanning a wide trophic range. More surprisingly, plankton respiration exceeds algal photosynthesis in oligotrophic lakes, and P/R rises above unity only when chlorophyll concentrations are above 17 mg∙m−3. A simple allometric model based on the predicted biomasses of the different planktonic component yield rates of community respiration that are in good agreement with measured values. Moreover, the model suggest that in oligotrophic lakes, microbial respiration may greatly exceed the current estimates based on bacterial production data and that heterotrophs contribute proportionately more to total plankton metabolism than they do in eutrophic lakes. Because such high respiration rates require external energy subsidies, these results; challenge the view that pelagial communities of most lakes are even approximately self-supporting.



2021 ◽  
Author(s):  
Melanie Münch ◽  
Rianne van Kaam ◽  
Karel As ◽  
Stefan Peiffer ◽  
Gerard ter Heerdt ◽  
...  

<p>The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.</p><p>In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.</p><p>In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.</p><p>The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.</p><p>Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.</p>



2018 ◽  
Vol 9 ◽  
Author(s):  
Arjen Tilstra ◽  
Nanne van Hoytema ◽  
Ulisse Cardini ◽  
Vanessa N. Bednarz ◽  
Laura Rix ◽  
...  


2015 ◽  
Vol 12 (5) ◽  
pp. 1561-1583 ◽  
Author(s):  
M. Hagens ◽  
C. P. Slomp ◽  
F. J. R. Meysman ◽  
D. Seitaj ◽  
J. Harlay ◽  
...  

Abstract. Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity in any hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water-column chemistry measurements were complemented with estimates of primary production and respiration using O2 light–dark incubations, in addition to sediment–water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting data set was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air–sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment–water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid–base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid–base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.



2016 ◽  
Author(s):  
Jun Liu ◽  
Lex Bouwman ◽  
Jiaye Zang ◽  
Chenying Zhao ◽  
Xiaochen Liu ◽  
...  

Abstract. Silicon (Si) and carbon (C) play key roles in the river and marine biogeochemistry. The Si and C budgets for the Bohai Sea were established on the basis of measurements at a range of stations and additional data from the literature. The results show that the spatial distributions of reactive Si and organic C (OC) in the water column are largely affected by the riverine input, primary production and export to the Yellow Sea. Biogenic silica (BSi) and total OC in sediments are mainly from marine primary production. The major supply of dissolved silicate (DSi) comes from benthic diffusion, riverine input alone accounts for 17 % of reactive Si inputs to the Bohai Sea; the dominant DSi removal from the water column is diatom uptake, followed by sedimentation. Rivers contribute 47 % of exogenous OC inputs to the Bohai Sea; the dominant outputs of OC are sedimentation and export to the Yellow Sea. The net burial of BSi and OC represent 3.3 % and 1.0 % of total primary production, respectively. Primary production has increased by 10 % since 2002 as a result of increased river loads of DSi and BSi. Our findings underline the critical role of riverine Si supply in primary production in coastal marine ecosystems.



1971 ◽  
Vol 28 (2) ◽  
pp. 189-201 ◽  
Author(s):  
D. W. Schindler ◽  
S. K. Holmgren

A modified 14C method is described for measuring phytoplankton production in low-carbonate waters. The procedure includes the use of the Arthur and Rigler (Limnol. Oceanogr. 12: 121–124, 1967) technique for determining filtration error, liquid scintillation counting for determining the radioactivity of membrane filters and stock 14C solutions, and gas chromatography for measuring total CO2.Primary production, chlorophyll a, and total CO2 were measured for two dates in midsummer from each of several lakes in the Experimental Lakes Area (ELA), ranging from 1 to 1000 ha in area and from 2 to 117 m in maximum depth. Phytoplankton species abundance and biomass were determined for the same dates. Production ranged from 0.02 to 2.12 gC/m3∙day and from 0.179 to 1.103 g C/m2∙day. Chlorophyll ranged from 0.4 to 44 mg/m3 and from 5 to 98 mg/m2 in the euphotic zone. The corresponding ranges for live phytoplankton biomass were 120–5400 mg/m3 and 2100–13,400 mg/m2. Chrysophyceae dominated the phytoplankton of most of the lakes.A system for classifying the lakes in terms of phytoplankton species composition and production–depth curves is developed.



Oceanology ◽  
2021 ◽  
Vol 61 (5) ◽  
pp. 645-661
Author(s):  
A. B. Demidov ◽  
V. I. Gagarin ◽  
E. V. Eremeeva ◽  
V. A. Artemiev ◽  
A. A. Polukhin ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document