scholarly journals Genome-wide identification and expression analysis of the apple ASR gene family in response to Alternaria alternata f. sp. mali

Genome ◽  
2016 ◽  
Vol 59 (10) ◽  
pp. 866-878 ◽  
Author(s):  
Kaihui Huang ◽  
Yan Zhong ◽  
Yingjun Li ◽  
Dan Zheng ◽  
Zong-Ming Cheng

The ABA/water stress/ripening-induced (ASR) gene family exists universally in higher plants, and many ASR genes are up-regulated during periods of environmental stress and fruit ripening. Although a considerable amount of research has been performed investigating ASR gene response to abiotic stresses, relatively little is known about their roles in response to biotic stresses. In this report, we identified five ASR genes in apple (Malus × domestica) and explored their phylogenetic relationship, duplication events, and selective pressure. Five apple ASR genes (Md-ASR) were divided into two clades based on phylogenetic analysis. Species-specific duplication was detected in M. domestica ASR genes. Leaves of ‘Golden delicious’ and ‘Starking’ were infected with Alternaria alternata f. sp. mali, which causes apple blotch disease, and examined for the expression of the ASR genes in lesion areas during the first 72 h after inoculation. Md-ASR genes showed different expression patterns at different sampling times in ‘Golden delicious’ and ‘Starking’. The activities of stress-related enzymes, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia lyase (PAL), and polyphenoloxidase (PPO), and the content of malondialdehyde (MDA) were also measured in different stages of disease development in two cultivars. The ASR gene expression patterns and theses physiological indexes for disease resistance suggested that Md-ASR genes are involved in biotic stress responses in apple.

2018 ◽  
Vol 19 (10) ◽  
pp. 3246 ◽  
Author(s):  
Jianbo Li ◽  
Jin Zhang ◽  
Huixia Jia ◽  
Zhiqiang Yue ◽  
Mengzhu Lu ◽  
...  

Small heat shock proteins (sHsps) function mainly as molecular chaperones that play vital roles in response to diverse stresses, especially high temperature. However, little is known about the molecular characteristics and evolutionary history of the sHsp family in Salix suchowensis, an important bioenergy woody plant. In this study, 35 non-redundant sHsp genes were identified in S. suchowensis, and they were divided into four subfamilies (C, CP, PX, and MT) based on their phylogenetic relationships and predicted subcellular localization. Though the gene structure and conserved motif were relatively conserved, the sequences of the Hsp20 domain were diversified. Eight paralogous pairs were identified in the Ssu-sHsp family, in which five pairs were generated by tandem duplication events. Ka/Ks analysis indicated that Ssu-sHsps had undergone purifying selection. The expression profiles analysis showed Ssu-Hsps tissue-specific expression patterns, and they were induced by at least one abiotic stress. The expression correlation between two paralogous pairs (Ssu-sHsp22.2-CV/23.0-CV and 23.8-MT/25.6-MT) were less than 0.6, indicating that they were divergent during the evolution. Various cis-acting elements related to stress responses, hormone or development, were detected in the promoter of Ssu-sHsps. Furthermore, the co-expression network revealed the potential mechanism of Ssu-sHsps under stress tolerance and development. These results provide a foundation for further functional research on the Ssu-sHsp gene family in S. suchowensis.


2021 ◽  
Vol 22 (8) ◽  
pp. 4197
Author(s):  
Shiyang Zhang ◽  
Junjie Liu ◽  
Guixian Zhong ◽  
Bo Wang

The C2H2-zinc finger protein (C2H2-ZFP) is essential for the regulation of plant development and widely responsive to diverse stresses including drought, cold and salt stress, further affecting the late flavonoid accumulation in higher plants. Tea is known as a popular beverage worldwide and its quality is greatly dependent on the physiological status and growing environment of the tea plant. To date, the understanding of C2H2-ZFP gene family in Camellia sinensis [L.] O. Kuntze is not yet available. In the present study, 134 CsC2H2-ZFP genes were identified and randomly distributed on 15 chromosomes. The CsC2H2-ZFP gene family was classified into four clades and gene structures and motif compositions of CsC2H2-ZFPs were similar within the same clade. Segmental duplication and negative selection were the main forces driving the expansion of the CsC2H2-ZFP gene family. Expression patterns suggested that CsC2H2-ZFPs were responsive to different stresses including drought, salt, cold and methyl jasmonate (MeJA) treatment. Specially, several C2H2-ZFPs showed a significant correlation with the catechins content and responded to the MeJA treatment, which might contribute to the tea quality and specialized astringent taste. This study will lay the foundations for further research of C2H2-type zinc finger proteins on the stress responses and quality-related metabolites accumulation in C. sinensis.


2022 ◽  
Vol 12 ◽  
Author(s):  
Rehman Sarwar ◽  
Rui Geng ◽  
Lei Li ◽  
Yue Shan ◽  
Ke-Ming Zhu ◽  
...  

BRASSINAZOLE RESISTANT (BZR) are transcriptional factors that bind to the DNA of targeted genes to regulate several plant growth and physiological processes in response to abiotic and biotic stresses. However, information on such genes in Brassica napus is minimal. Furthermore, the new reference Brassica napus genome offers an excellent opportunity to systematically characterize this gene family in B. napus. In our study, 21 BnaBZR genes were distributed across 19 chromosomes of B. napus and clustered into four subgroups based on Arabidopsis thaliana orthologs. Functional divergence analysis among these groups evident the shifting of evolutionary rate after the duplication events. In terms of structural analysis, the BnaBZR genes within each subgroup are highly conserved but are distinctive within groups. Organ-specific expression analyses of BnaBZR genes using RNA-seq data and quantitative real-time polymerase chain reaction (qRT-PCR) revealed complex expression patterns in plant tissues during stress conditions. In which genes belonging to subgroups III and IV were identified to play central roles in plant tolerance to salt, drought, and Sclerotinia sclerotiorum stress. The insights from this study enrich our understanding of the B. napus BZR gene family and lay a foundation for future research in improving rape seed environmental adaptability.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0241965
Author(s):  
Juanjuan Li ◽  
Faisal Islam ◽  
Qian Huang ◽  
Jian Wang ◽  
Weijun Zhou ◽  
...  

WRKY transcription factors play important roles in various physiological processes and stress responses in flowering plants. Sunflower (Helianthus annuus L.) is one of the important vegetable oil supplies in the world. However, the information about WRKY genes in sunflower is limited. In this study, ninety HaWRKY genes were identified and renamed according to their locations on chromosomes. Further phylogenetic analyses classified them into four main groups including a species-specific WKKY group. Besides, HaWRKY genes within the same group or subgroup generally showed similar exon-intron structures and motif compositions. The gene duplication analysis showed that five pairs of HaWRKY genes (HaWRKY8/9, HaWRKY53/54, HaWRKY65/66, HaWRKY66/67 and HaWRKY71/72) are tandem duplicated and four HaWRKY gene pairs (HaWRKY15/82, HaWRKY25/65, HaWRKY28/55 and HaWRKY50/53) are also identified as segmental duplication events, indicating that these duplication genes were contribute to the diversity and expansion of HaWRKY gene families. The dN/dS ratio of these duplicated gene pairs were also calculated to understand the evolutionary constraints. In addition, synteny analyses of sunflower WRKY genes provided deep insight to the evolution of HaWRKY genes. Transcriptomic and qRT-PCR analyses of HaWRKY genes displayed distinct expression patterns in different plant tissues, as well as under various abiotic and biotic stresses, which provide a foundation for further functional analyses of these genes. Those functional genes related to stress tolerance and quality improvement could be applied in marker assisted breeding of the crop.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fuyun Hou ◽  
Taifeng Du ◽  
Zhen Qin ◽  
Tao Xu ◽  
Aixian Li ◽  
...  

Abstract Background Sweetpotato (Ipomoea batatas (L.) Lam.) serves as an important food source for human beings. β-galactosidase (bgal) is a glycosyl hydrolase involved in cell wall modification, which plays essential roles in plant development and environmental stress adaptation. However, the function of bgal genes in sweetpotato remains unclear. Results In this study, 17 β-galactosidase genes (Ibbgal) were identified in sweetpotato, which were classified into seven subfamilies using interspecific phylogenetic and comparative analysis. The promoter regions of Ibbgals harbored several stress, hormone and light responsive cis-acting elements. Quantitative real-time PCR results displayed that Ibbgal genes had the distinct expression patterns across different tissues and varieties. Moreover, the expression profiles under various hormonal treatments, abiotic and biotic stresses were highly divergent in leaves and root. Conclusions Taken together, these findings suggested that Ibbgals might play an important role in plant development and stress responses, which provided evidences for further study of bgal function and sweetpotato breeding.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kai Zhao ◽  
Song Chen ◽  
Wenjing Yao ◽  
Zihan Cheng ◽  
Boru Zhou ◽  
...  

Abstract Background The bZIP gene family, which is widely present in plants, participates in varied biological processes including growth and development and stress responses. How do the genes regulate such biological processes? Systems biology is powerful for mechanistic understanding of gene functions. However, such studies have not yet been reported in poplar. Results In this study, we identified 86 poplar bZIP transcription factors and described their conserved domains. According to the results of phylogenetic tree, we divided these members into 12 groups with specific gene structures and motif compositions. The corresponding genes that harbor a large number of segmental duplication events are unevenly distributed on the 17 poplar chromosomes. In addition, we further examined collinearity between these genes and the related genes from six other species. Evidence from transcriptomic data indicated that the bZIP genes in poplar displayed different expression patterns in roots, stems, and leaves. Furthermore, we identified 45 bZIP genes that respond to salt stress in the three tissues. We performed co-expression analysis on the representative genes, followed by gene set enrichment analysis. The results demonstrated that tissue differentially expressed genes, especially the co-expressing genes, are mainly involved in secondary metabolic and secondary metabolite biosynthetic processes. However, salt stress responsive genes and their co-expressing genes mainly participate in the regulation of metal ion transport, and methionine biosynthetic. Conclusions Using comparative genomics and systems biology approaches, we, for the first time, systematically explore the structures and functions of the bZIP gene family in poplar. It appears that the bZIP gene family plays significant roles in regulation of poplar development and growth and salt stress responses through differential gene networks or biological processes. These findings provide the foundation for genetic breeding by engineering target regulators and corresponding gene networks into poplar lines.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hao Song ◽  
Ximing Guo ◽  
Lina Sun ◽  
Qianghui Wang ◽  
Fengming Han ◽  
...  

Abstract Background Inhibitors of apoptosis (IAPs) are critical regulators of programmed cell death that are essential for development, oncogenesis, and immune and stress responses. However, available knowledge regarding IAP is largely biased toward humans and model species, while the distribution, function, and evolutionary novelties of this gene family remain poorly understood in many taxa, including Mollusca, the second most speciose phylum of Metazoa. Results Here, we present a chromosome-level genome assembly of an economically significant bivalve, the hard clam Mercenaria mercenaria, which reveals an unexpected and dramatic expansion of the IAP gene family to 159 members, the largest IAP gene repertoire observed in any metazoan. Comparative genome analysis reveals that this massive expansion is characteristic of bivalves more generally. Reconstruction of the evolutionary history of molluscan IAP genes indicates that most originated in early metazoans and greatly expanded in Bivalvia through both lineage-specific tandem duplication and retroposition, with 37.1% of hard clam IAPs located on a single chromosome. The expanded IAPs have been subjected to frequent domain shuffling, which has in turn shaped their architectural diversity. Further, we observed that extant IAPs exhibit dynamic and orchestrated expression patterns among tissues and in response to different environmental stressors. Conclusions Our results suggest that sophisticated regulation of apoptosis enabled by the massive expansion and diversification of IAPs has been crucial for the evolutionary success of hard clam and other molluscan lineages, allowing them to cope with local environmental stresses. This study broadens our understanding of IAP proteins and expression diversity and provides novel resources for studying molluscan biology and IAP function and evolution.


Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 494 ◽  
Author(s):  
Xiaokang Zhuo ◽  
Tangchun Zheng ◽  
Zhiyong Zhang ◽  
Yichi Zhang ◽  
Liangbao Jiang ◽  
...  

NAC transcription factors (TFs) participate in multiple biological processes, including biotic and abiotic stress responses, signal transduction and development. Cold stress can adversely impact plant growth and development, thereby limiting agricultural productivity. Prunus mume, an excellent horticultural crop, is widely cultivated in Asian countries. Its flower can tolerate freezing-stress in the early spring. To investigate the putative NAC genes responsible for cold-stress, we identified and analyzed 113 high-confidence PmNAC genes and characterized them by bioinformatics tools and expression profiles. These PmNACs were clustered into 14 sub-families and distributed on eight chromosomes and scaffolds, with the highest number located on chromosome 3. Duplicated events resulted in a large gene family; 15 and 8 pairs of PmNACs were the result of tandem and segmental duplicates, respectively. Moreover, three membrane-bound proteins (PmNAC59/66/73) and three miRNA-targeted genes (PmNAC40/41/83) were identified. Most PmNAC genes presented tissue-specific and time-specific expression patterns. Sixteen PmNACs (PmNAC11/19/20/23/41/48/58/74/75/76/78/79/85/86/103/111) exhibited down-regulation during flower bud opening and are, therefore, putative candidates for dormancy and cold-tolerance. Seventeen genes (PmNAC11/12/17/21/29/42/30/48/59/66/73/75/85/86/93/99/111) were highly expressed in stem during winter and are putative candidates for freezing resistance. The cold-stress response pattern of 15 putative PmNACs was observed under 4 °C at different treatment times. The expression of 10 genes (PmNAC11/20/23/40/42/48/57/60/66/86) was upregulated, while 5 genes (PmNAC59/61/82/85/107) were significantly inhibited. The putative candidates, thus identified, have the potential for breeding the cold-tolerant horticultural plants. This study increases our understanding of functions of the NAC gene family in cold tolerance, thereby potentially intensifying the molecular breeding programs of woody plants.


2022 ◽  
Vol 23 (2) ◽  
pp. 614
Author(s):  
Weiqi Sun ◽  
Mengdi Li ◽  
Jianbo Wang

Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3955 ◽  
Author(s):  
Yiling Niu ◽  
Tingting Zhao ◽  
Xiangyang Xu ◽  
Jingfu Li

Solanum lycopersicum, belonging to Solanaceae, is one of the commonly used model plants. The GRAS genes are transcriptional regulators, which play a significant role in plant growth and development, and the functions of several GRAS genes have been recognized, such as, axillary shoot meristem formation, radial root patterning, phytohormones (gibberellins) signal transduction, light signaling, and abiotic/biotic stress; however, only a few of these were identified and functionally characterized. In this study, a gene family was analyzed comprehensively with respect to phylogeny, gene structure, chromosomal localization, and expression pattern; the 54 GRAS members were screened from tomato by bioinformatics for the first time. The GRAS genes among tomato, Arabidopsis, rice, and grapevine were rebuilt to form a phylogenomic tree, which was divided into ten groups according to the previous classification of Arabidopsis and rice. A multiple sequence alignment exhibited the typical GRAS domain and conserved motifs similar to other gene families. Both the segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in tomato; the expression patterns across a variety of tissues and biotic conditions revealed potentially different functions of GRAS genes in tomato development and stress responses. Altogether, this study provides valuable information and robust candidate genes for future functional analysis for improving the resistance of tomato growth.


Sign in / Sign up

Export Citation Format

Share Document