Gene regulation by mechanotransduction in fibroblasts

2007 ◽  
Vol 32 (5) ◽  
pp. 967-973 ◽  
Author(s):  
Matthias Chiquet ◽  
Vildan Tunç-Civelek ◽  
Ana Sarasa-Renedo

Mechanical forces are important for connective tissue homeostasis. How do fibroblasts sense mechanical stress and how do they translate this information into an adaptive remodeling of the extracellular matrix (ECM)? Tenascin-C is rapidly induced in vivo by loading muscles and in vitro by stretching fibroblasts. Regulation of tenascin-C expression by mechanical signals occurs at the transcriptional level. Integrin receptors physically link the ECM to the cytoskeleton and act as force transducers: intracellular signals are triggered when integrins engage with ECM, and later when forces are applied. We found that cyclic strain does not induce tenascin-C messenger ribonucleic acid (mRNA) in fibroblasts lacking the β1-integrin chain. An important link in integrin-dependent mechanotransduction is the small guanosine 5′-triphosphatase. RhoA and its target kinase, ROCK. In fibroblasts, cyclic strain activates RhoA and thereby induces ROCK-dependent actin assembly. Interestingly, tenascin-C mRNA induction by cyclic strain was suppressed by relaxing the cytoskeleton with a ROCK inhibitor or by actin depolymerization. Conversely, chemical activators of RhoA enhanced the effect of strain both on actin dynamics and on tenascin-C expression. Thus, RhoA/ROCK-controlled actin dynamics are required for the induction of specific ECM genes by mechanical stress. These findings have implications for the understanding of regeneration and for tissue engineering.

1992 ◽  
Vol 1 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Toshiaki Iba ◽  
Bauer E. Sumpio

The effects of cyclic strain on the production of tissue plasminogen activator (tPA) and type 1 plasminogen activator inhibitor (PAI-1) by cultured endothelial cells (EC) were examined. Human saphenous vein EC were seeded in selective areas of culture plates with flexible membrane bottoms (corresponding to specific strain regions) and grown to confluence. Membranes were deformed by vacuum (-20 kPa) at 60 cycles/min (0.5 s strain alternating with 0.5 s relaxation in the neutral position) for 5 days. EC grown in the periphery were subjected to 7-24% strain, while cells grown in the center experienced less than 7% strain. The results show a significant increase in immunoreactive tPA production on days 1, 3 and 5 compared to day 0 in EC subjected to more than 7% cyclic strain. There was no significant elevation of tPA in the medium of EC subjected to less than 7% strain. tPA activity could only be detected in the medium of EC subjected to more than 7% cyclic strain. PAI-1 levels in the medium were not significantly different in either group. In addition, immunocytochemical detection of intracellular tPA and messenger ribonucleic acid (mRNA) expression of tPA (assessed by the reverse transcriptase polymerase chain reaction utilizing tPA specific sense and antisense primers) was significantly increased in EC subjected to more than 7% cyclic strain. We conclude that a 60 cycles/min regimen of strain that is greater than 7% can selectively stimulate tPA production by EC in vitro and may contribute to the relative nonthrombogenicity of the endothelium in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zhang ◽  
Zhaohui Zhong ◽  
Mei Li ◽  
Jingyi Chen ◽  
Tingru Lin ◽  
...  

AbstractAbnormally expressed and/or phosphorylated Abelson interactor 1 (ABI1) participates in the metastasis and progression of colorectal cancer (CRC). ABI1 presents as at least 12 transcript variants (TSVs) by mRNA alternative splicing, but it is unknown which of them is involved in CRC metastasis and prognosis. Here, we firstly identified ABI1-TSV-11 as a key TSV affecting the metastasis and prognosis of left-sided colorectal cancer (LsCC) and its elevated expression is related to lymph node metastasis and shorter overall survival (OS) in LsCC by analyzing data from The Cancer Genome Atlas and TSVdb. Secondly, ABI1-TSV-11 overexpression promoted LoVo and SW480 cells adhesion and migration in vitro, and accelerated LoVo and SW480 cells lung metastasis in vivo. Finally, mechanism investigations revealed that ABI1-isoform-11 interacted with epidermal growth factor receptor pathway substrate 8 (ESP8) and regulated actin dynamics to affect LoVo and SW480 cells biological behaviors. Taken together, our data demonstrated that ABI1-TSV-11 plays an oncogenic role in LsCC, it is an independent risk factor of prognosis and may be a potential molecular marker and therapeutic target in LsCC.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.


2021 ◽  
Vol 22 (9) ◽  
pp. 4678
Author(s):  
Sepideh Parvanian ◽  
Hualian Zha ◽  
Dandan Su ◽  
Lifang Xi ◽  
Yaming Jiu ◽  
...  

Mechanical stress following injury regulates the quality and speed of wound healing. Improper mechanotransduction can lead to impaired wound healing and scar formation. Vimentin intermediate filaments control fibroblasts’ response to mechanical stress and lack of vimentin makes cells significantly vulnerable to environmental stress. We previously reported the involvement of exosomal vimentin in mediating wound healing. Here we performed in vitro and in vivo experiments to explore the effect of wide-type and vimentin knockout exosomes in accelerating wound healing under osmotic stress condition. Our results showed that osmotic stress increases the size and enhances the release of exosomes. Furthermore, our findings revealed that exosomal vimentin enhances wound healing by protecting fibroblasts against osmotic stress and inhibiting stress-induced apoptosis. These data suggest that exosomes could be considered either as a stress modifier to restore the osmotic balance or as a conveyer of stress to induce osmotic stress-driven conditions.


2007 ◽  
Vol 18 (3) ◽  
pp. 827-838 ◽  
Author(s):  
Céline Revenu ◽  
Matthieu Courtois ◽  
Alphée Michelot ◽  
Cécile Sykes ◽  
Daniel Louvard ◽  
...  

Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.


2003 ◽  
Vol 23 (8) ◽  
pp. 2953-2968 ◽  
Author(s):  
Ville Hietakangas ◽  
Johanna K. Ahlskog ◽  
Annika M. Jakobsson ◽  
Maria Hellesuo ◽  
Niko M. Sahlberg ◽  
...  

ABSTRACT The heat shock response, which is accompanied by a rapid and robust upregulation of heat shock proteins (Hsps), is a highly conserved protection mechanism against protein-damaging stress. Hsp induction is mainly regulated at transcriptional level by stress-inducible heat shock factor 1 (HSF1). Upon activation, HSF1 trimerizes, binds to DNA, concentrates in the nuclear stress granules, and undergoes a marked multisite phosphorylation, which correlates with its transcriptional activity. In this study, we show that HSF1 is modified by SUMO-1 and SUMO-2 in a stress-inducible manner. Sumoylation is rapidly and transiently enhanced on lysine 298, located in the regulatory domain of HSF1, adjacent to several critical phosphorylation sites. Sumoylation analyses of HSF1 phosphorylation site mutants reveal that specifically the phosphorylation-deficient S303 mutant remains devoid of SUMO modification in vivo and the mutant mimicking phosphorylation of S303 promotes HSF1 sumoylation in vitro, indicating that S303 phosphorylation is required for K298 sumoylation. This finding is further supported by phosphopeptide mapping and analysis with S303/7 phosphospecific antibodies, which demonstrate that serine 303 is a target for strong heat-inducible phosphorylation, corresponding to the inducible HSF1 sumoylation. A transient phosphorylation-dependent colocalization of HSF1 and SUMO-1 in nuclear stress granules provides evidence for a strictly regulated subnuclear interplay between HSF1 and SUMO.


Author(s):  
Xudong Zhang ◽  
Anis Nurashikin Nordin ◽  
Fang Li ◽  
Ioana Voiculescu

This paper presents the fabrication and testing of electric cell-substrate impedance spectroscopy (ECIS) electrodes on a stretchable membrane. This is the first time when ECIS electrodes were fabricated on a stretchable substrate and ECIS measurements on mammalian cells exposed to cyclic strain of 10% were successfully demonstrated. A chemical was used to form strong chemical bond between gold electrodes of ECIS sensor and polymer membrane, which enable the electrodes keep good conductive ability during cyclic stretch. The stretchable membrane integrated with the ECIS sensor can simulate and replicate the dynamic environment of organism and enable the analysis of the cells activity involved in cells attachment and proliferation in vitro. Bovine aortic endothelial cells (BAEC) were used to evaluate the endothelial function influenced by mechanical stimuli in this research because they undergo in vivo cyclic physiologic elongation produced by the blood circulation in the arteries.


1996 ◽  
Vol 16 (6) ◽  
pp. 2977-2986 ◽  
Author(s):  
C Antoniewski ◽  
B Mugat ◽  
F Delbac ◽  
J A Lepesant

The steroid hormone 20-hydroxyecdysone plays a key role in the induction and modulation of morphogenetic events throughout Drosophila development. Previous studies have shown that a heterodimeric nuclear receptor composed of the EcR and USP proteins mediates the action of the hormone at the transcriptional through binding to palindromic ecdysteroid mediates the action of the hormone at the transcriptional level through binding to palindromic ecdysteroid response elements (EcREs) such as those present in the promoter of the hsp27 gene or the fat body-specific enhancer of the Fbp1 gene. We show that in addition to palindromic EcREs, the EcR/USP heterodimer can bind in vitro with various affinities to direct repetitions of the motif AGGTCA separated by 1 to 5 nucleotides (DR1 to DR5), which are known to be target sites for vertebrate nuclear receptors. At variance with the receptors, EcR/USP was also found to bind to a DR0 direct repeat with no intervening nucleotide. In cell transformation assays, direct repeats DR0 to DR5 alone can render the minimum viral tk or Drosophila Fbp1 promoter responsive to 20-hydroxyecdysone, as does the palindromic hsp27 EcRE. In a transgenic assay, however, neither the palindromic hsp27 element nor direct repeat DR3 alone can make the Fbp1 minimal promoter responsive to premetamorphic ecdysteroid peaks. In contrast, DR0 and DR3 elements, when substituted for the natural palindromic EcRE in the context of the Fbp1 enhancer, can drive a strong fat body-specific ecdysteroid response in transgenic animals. These results demonstrate that directly repeated EcR/USP binding sites are as effective as palindromic EcREs in vivo. They also provide evidence that additional flanking regulatory sequences are crucially required to potentiate the hormonal response mediated by both types of elements and specify its spatial and temporal pattern.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii101-ii101
Author(s):  
Christoph Kesseler ◽  
Julian Kahr ◽  
Natalie Waldt ◽  
Nele Stroscher ◽  
Josephine Liebig ◽  
...  

Abstract PURPOSE To evaluate the role of the small GTPases RhoA, Rac1 and Cdc42 in meningiomas as therapeutic targets and their interactions in meningiomas. EXPERIMENTAL DESIGN We analyzed expression of GTPases in human meningioma samples and meningioma cell lines of various WHO grades. Malignant IOMM-Lee meningioma cells were used to generate shRNA mediated knockdowns of GTPases RhoA, Rac1 or Cdc42 and to study knockdown effects on proliferation and migration, as well as analysis of cell morphology by confocal microscopy. The same tests were used to investigate effects of the two inhibitors Fasudil and EHT-1864 of malignant IOMM-Lee, KT21 and benign Ben-Men cells and the effects of these drugs on IOMM-Lee knockdown cells. The effects of GTPase knockdowns and Fasudil treatment were studied in terms of overall survival by intracranial xenografts of mice. Potential interactions of GTPases regarding NF2, mTOR and FAK-Paxillin were examined. RESULTS Small GTPases were upregulated in meningiomas of higher tumor grades. Reduced proliferation and migration could be achieved by GTPase knockdown in IOMM-Lee cells. Additionally, the ROCK-inhibitor Fasudil and Rac1-inhibitor EHT-1864 reduced proliferation in different meningioma cell lines and reduced proliferation and migration independent of GTPase knockdowns/status. Moreover, overall survival in vivo could also be increased by knockdowns of RhoA and Rac1 as well as Fasudil treatment. GTPase expression was affected dependent on the NF2 status but effects were not very distinct, indicating that NF2 is not strongly involved in GTPase regulation in meningiomas. In terms of mTOR and FAK-Paxillin signaling, each GTPase changes those pathways in a different manner. CONCLUSION Small GTPases are important effectors in meningioma proliferation and migration in vitro as well as survival in vivo and their inhibition should be considered as potential treatment option.


2000 ◽  
Vol 113 (20) ◽  
pp. 3583-3591 ◽  
Author(s):  
M. Fluck ◽  
V. Tunc-Civelek ◽  
M. Chiquet

Tenascin-C and tenascin-Y are two structurally related extracellular matrix glycoproteins that in many tissues show a complementary expression pattern. Tenascin-C and the fibril-associated minor collagen XII are expressed in tissues bearing high tensile stress and are located in normal skeletal muscle, predominantly at the myotendinous junction that links muscle fibers to tendon. In contrast, tenascin-Y is strongly expressed in the endomysium surrounding single myofibers, and in the perimysial sheath around fiber bundles. We previously showed that tenascin-C and collagen XII expression in primary fibroblasts is regulated by changes in tensile stress. Here we have tested the hypothesis that the expression of tenascin-C, tenascin-Y and collagen XII in skeletal muscle connective tissue is differentially modulated by mechanical stress in vivo. Chicken anterior latissimus dorsi muscle (ALD) was mechanically stressed by applying a load to the left wing. Within 36 hours of loading, expression of tenascin-C protein was ectopically induced in the endomysium along the surface of single muscle fibers throughout the ALD, whereas tenascin-Y protein expression was barely affected. Expression of tenascin-C protein stayed elevated after 7 days of loading whereas tenascin-Y protein was reduced. Northern blot analysis revealed that tenascin-C mRNA was induced in ALD within 4 hours of loading while tenascin-Y mRNA was reduced within the same period. In situ hybridization indicated that tenascin-C mRNA induction after 4 hours of loading was uniform throughout the ALD muscle in endomysial fibroblasts. In contrast, the level of tenascin-Y mRNA expression in endomysium appeared reduced within 4 hours of loading. Tenascin-C mRNA and protein induction after 4–10 hours of loading did not correlate with signs of macrophage infiltration. Tenascin-C protein decreased again with removal of the load and nearly disappeared after 5 days. Furthermore, loading was also found to induce expression of collagen XII mRNA and protein, but to a markedly lower level, with slower kinetics and only partial reversibility. The results suggest that mechanical loading directly and reciprocally controls the expression of extracellular matrix proteins of the tenascin family in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document