Probabilistic characterization of roof panel uplift capacity under wind loading

2012 ◽  
Vol 39 (12) ◽  
pp. 1285-1296 ◽  
Author(s):  
W.X. He ◽  
H.P. Hong

The integrity of the roof system is important to the safety of inhabitants and prevents excessive damage to light-frame wood structures. The uplift capacity of fastened roof panels has been investigated using experimental tests and numerical models. Monotonically increasing uniform static pressure is often employed in experimental investigations and numerical modeling is carried out by assuming that the tributary area method is adequate and the fasteners can be modeled as linear elastic springs, even though the force–deformation relationship for nail withdrawal is nonlinear and uncertain. This study is aimed at assessing the statistical characteristics and modeling the uplift capacity for the roof panel under stochastic wind pressure by incorporating the uncertainty in nail withdrawal behaviour. The results show that the nonlinear behaviour of nail withdrawal needs to be considered to improve the accuracy of the estimated uplift capacity; the statistics and the probability model of the uplift capacity are affected by the degree of correlation of the fastener behaviour within the panel; and that nail spacing and missing nails influence the uplift capacity significantly.

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 413 ◽  
Author(s):  
Anh Chi Nguyen ◽  
Yves Weinand

Recent advances in timber construction have led to the realization of complex timber plate structures assembled with wood-wood connections. Although advanced numerical modelling tools have been developed to perform their structural analysis, limited experimental tests have been carried out on large-scale structures. However, experimental investigations remain necessary to better understand their mechanical behaviour and assess the numerical models developed. In this paper, static loading tests performed on timber plate shells of about 25 m span are reported. Displacements were measured at 16 target positions on the structure using a total station and on its entire bottom surface using a terrestrial laser scanner. Both methods were compared to each other and to a finite element model in which the semi-rigidity of the connections was represented by springs. Total station measurements provided more consistent results than point clouds, which nonetheless allowed the visualization of displacement fields. Results predicted by the model were found to be in good agreement with the measurements compared to a rigid model. The semi-rigid behaviour of the connections was therefore proven to be crucial to precisely predict the behaviour of the structure. Furthermore, large variations were observed between as-built and designed geometries due to the accumulation of fabrication and construction tolerances.


2016 ◽  
Vol 6 (1) ◽  
pp. 35-40
Author(s):  
M. Ghindea ◽  
A. Cătărig ◽  
R. Ballok

Abstract Based on the results of experimental tests, presented in the first part of this paper, Part 1-Experimental Investigations (Ghindea M., Catarig A., Ballok R.) advanced numerical simulations were performed using FEM based software Abaqus. The recently arise of high speed computers and advanced FEM software packages allow to create and solve extensively detailed 3D models. The aim of this second part of the paper is to develop accurate FEM models for better approach of the studied beam-to-column connections. The paper presents the designed numerical models and the results for four bolted beam-to-column connections using top-and-seat and/or web angle cleats, in different configurations. The objective of this paper is to achieve functional numerical models which, by faithfully running, reproduce the experimental results. Thus, calibrating the numerical results with the experimental ones it can be perform then parametric studies, achieving reliable results for similar configurations of joints. The results obtained after numerical simulations were compared with experimental data. The behavior moment-rotation curve and the deformation process of the experimental captured specimens were virtually reproduced with minimum deviation.


2017 ◽  
Vol 23 (6) ◽  
pp. 814-835 ◽  
Author(s):  
Jaroslaw MALESZA ◽  
Czeslaw MIEDZIALOWSKI ◽  
Leonas USTINOVICHIUS

This paper focuses on development of the high energy saving timber building and ecological technology protecting environment in civil engineering. Wood framed with sheathing, large panel structures became more popular building constructions in Poland last decade. Experimental tests and numerical analysis of panels and complete wood framed building have been taken into account. Typical two-story residential building was selected for test. Test of three dimensional (3D) whole building was conducted on the base of experimental investigations results of large panel similar to those used in building structure. Also adequate tests of materials and connections were accompanying of the whole structure investigations. Obtained results were adopted in numerical models elaborated for wall and floor panels and in 3D model of whole building. Load -displacements characteristics were acquired from tests and numerical models. The displacements computed from 3D numerical model were 10–20% higher than from experiment. Experimentally ob-tained lower displacements than those from analytical analysis are resulted from higher stiffness of wall system due to diaphragms interconnections, their common interaction and three-dimensional character of building structure. Presented research analyzed method of computation of internal forces in building as well in the range of engineering methods in the form of rigid beam scheme up to the advanced methods using 3D spatial model adopting FEM.


Author(s):  
Celso P. Pesce ◽  
Guilherme R. Franzini ◽  
André L. C. Fujarra ◽  
Rodolfo T. Gonçalves ◽  
Rafael Salles ◽  
...  

This paper presents further experimental results of the dynamic response of a small-scale catenary riser model subjected to sinusoidal vertical motion imposed to the top, as a continuation of a previous one, presented at OMAE’2013. In that paper, a general view of an innovative experimental methodology using underwater optical techniques was given, together with some experimental results on VSIV - Vortex Self-Induced Vibrations, also referred to as Heave-Induced Lateral Motion, or Vessel Motion Induced VIV. It was then shown that such a behavior recovered similar ones reported in the technical literature by other authors and resembled fundamental studies, by Sumer and Fredsøe. In the present paper, new experimental tests are reported and analyzed. A similar catenary configuration is assessed. The analysis of VSIV trajectories is made via space-frequency amplitude spectra and space-time amplitude scalograms, revealing rich dynamic responses. The results are meant to serve as an experimental basis, contributing to the understanding of the VSIV phenomenology and to the benchmarking of numerical models.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 137
Author(s):  
Artur Andrearczyk ◽  
Bartlomiej Konieczny ◽  
Jerzy Sokołowski

This paper describes a novel method for the experimental validation of numerically optimised turbomachinery components. In the field of additive manufacturing, numerical models still need to be improved, especially with the experimental data. The paper presents the operational characteristics of a compressor wheel, measured during experimental research. The validation process included conducting a computational flow analysis and experimental tests of two compressor wheels: The aluminium wheel and the 3D printed wheel (made of a polymer material). The chosen manufacturing technology and the results obtained made it possible to determine the speed range in which the operation of the tested machine is stable. In addition, dynamic destructive tests were performed on the polymer disc and their results were compared with the results of the strength analysis. The tests were carried out at high rotational speeds (up to 120,000 rpm). The results of the research described above have proven the utility of this technology in the research and development of high-speed turbomachines operating at speeds up to 90,000 rpm. The research results obtained show that the technology used is suitable for multi-variant optimization of the tested machine part. This work has also contributed to the further development of numerical models.


2017 ◽  
Vol 10 (2) ◽  
pp. 477-508 ◽  
Author(s):  
C. F.R. SANTOS ◽  
R. C. S. S. ALVARENGA ◽  
J. C. L. RIBEIRO ◽  
L. O CASTRO ◽  
R. M. SILVA ◽  
...  

Abstract This work developed experimental tests and numerical models able to represent the mechanical behavior of prisms made of ordinary and high strength concrete blocks. Experimental tests of prisms were performed and a detailed micro-modeling strategy was adopted for numerical analysis. In this modeling technique, each material (block and mortar) was represented by its own mechanical properties. The validation of numerical models was based on experimental results. It was found that the obtained numerical values of compressive strength and modulus of elasticity differ by 5% from the experimentally observed values. Moreover, mechanisms responsible for the rupture of the prisms were evaluated and compared to the behaviors observed in the tests and those described in the literature. Through experimental results it is possible to conclude that the numerical models have been able to represent both the mechanical properties and the mechanisms responsible for failure.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


2014 ◽  
Vol 626 ◽  
pp. 109-114
Author(s):  
Wen Su Chen ◽  
Hong Hao ◽  
Hao Du

Hurricane, typhoon and cyclone take place more and more often around the world with changing climate. Such nature disasters cause tremendous economic loss and casualty. Various kinds of windborne debris such as compact-like, plate-like and rod-like objects driven by hurricane usually imposes localized impact loading on the structure envelopes such as cladding, wall or roof, etc. The dominant opening in the envelope might cause serious damage to the structures, even collapse. To withstand the impact of such extreme event, the requirements on panel capacity to resist windborne debris impact has been presented in the Australian Wind Loading Code (2011) [1]. Corrugated metal panels are widely used as building envelop. In a previous study, laboratory tests have been carried out to investigate the performance of corrugated metal panels subjected to a 4kg wooden projectile by considering various impact locations, impact velocities and boundary conditions. In this study, numerical models were developed to simulate the responses of the corrugated metal panels subjected to wooden debris impacts by using commercial software LS-DYNA. The predicted data from the numerical simulations were compared with the experimental results. The validated numerical model can be used to conduct intensive numerical simulation to study the failure probabilities of corrugated structural panels subjected to windborne debris impacts.


Author(s):  
Giorgio Diana ◽  
Stoyan Stoyanoff ◽  
Andrew Allsop ◽  
Luca Amerio ◽  
Tommaso Argentini ◽  
...  

<p>This paper is part of a series of publications aimed at the divulgation of the results of the 3-step benchmark proposed by the IABSE Task Group 3.1 to define reference results for the validation of the software that simulate the aeroelastic stability and the response to the turbulent wind of super-long span bridges. Step 1 is a numerical comparison of different numerical models both a sectional model (Step 1.1) and a full bridge (Step 1.2) are studied. Step 2 will be the comparison of predicted results and experimental tests in wind tunnel. Step 3 will be a comparison against full scale measurements.</p><p>The results of Step 1.1 related to the response of a sectional model were presented to the last IABSE Symposium in Nantes 2018. In this paper, the results of Step 1.2 related to the response long-span full bridge are presented in this paper both in terms of aeroelastic stability and buffeting response, comparing the results coming from several TG members.</p>


2015 ◽  
Vol 22 (5) ◽  
pp. 585-596 ◽  
Author(s):  
Damian BEBEN ◽  
Adam STRYCZEK

The paper presents a numerical analysis of corrugated steel plate (CSP) bridge with reinforced concrete (RC) relieving slab under static loads. Calculations were made based on the finite element method using Abaqus software. Two computation models were used; in the first one, RC slab was used, and the other was without it. The effect of RC slab to deformations of CSP shell was determined. Comparing the computational results from two numerical models, it can be concluded that when the relieving slab is applied, substantial reductions in displacements, stresses, bending mo­ments and axial thrusts are achieved. Relative reductions of displacements were in the range of 53–66%, and stresses of 73–82%. Maximum displacements and bending moments were obtained at the shell crown, and maximum stresses and axial thrusts at the quarter points. The calculation results were also compared to the values from experimental tests. The course of computed displacements and stresses is similar to those obtained from experimental tests, although the absolute values were generally higher than the measured ones. Results of numerical analyses can be useful for bridge engineering, with particular regard to bridges and culverts made from corrugated steel plates for the range of necessity of using additional relieving elements.


Sign in / Sign up

Export Citation Format

Share Document