Energy dissipation by jet diffusion in stormwater drop shafts

1993 ◽  
Vol 20 (3) ◽  
pp. 374-379 ◽  
Author(s):  
N. Rajaratnam ◽  
G. A. Johnston ◽  
M. A. Barber

This paper considers energy dissipation by jet diffusion in drop shafts used in urban stormwater systems, using the theory of circular turbulent jets. It presents experimental results on the decay of the maximum velocity in the jet for D/d in the range of 5 to 15, where D is the diameter of the chamber and d is the diameter of the jet at the water surface in the diffusion chamber. It was found that when D/d is small [Formula: see text], the decay of the velocity in the jet is appreciably larger than that in a jet in a large stagnant ambient. Key words: jet diffusion, drop shafts, stormwater systems, turbulent flow.

1979 ◽  
Vol 44 (5) ◽  
pp. 1388-1396
Author(s):  
Václav Kolář ◽  
Zdeněk Brož

Relations describing the mass transfer accompanied by an irreversible first order chemical reaction are derived, based on the formerly published general theoretical concepts of interfacial mass transfer. These relations are compared with experimental results taken from literature.


2021 ◽  
Vol 11 (7) ◽  
pp. 3275
Author(s):  
Majid Yaseri Gilvaee ◽  
Massood Mofid

This paper investigates the influence of an opening in the infill steel plate on the behavior of steel trapezoidal corrugated infill panels. Two specimens of steel trapezoidal corrugated shear walls were constructed and tested under cyclic loading. One specimen had a single rectangular opening, while the other one had two rectangular openings. In addition, the percentage of opening in both specimens was 18%. The initial stiffness, ultimate strength, ductility ratio and energy dissipation capacity of the two tested specimens are compared to a specimen without opening. The experimental results indicate that the existence of an opening has the greatest effect on the initial stiffness of the corrugated steel infill panels. In addition, the experimental results reveal that the structural performance of the specimen with two openings is improved in some areas compared to the specimen with one opening. To that end, the energy dissipation capacity of the specimen with two openings is obtained larger than the specimen with one opening. Furthermore, a number of numerical analyses were performed. The numerical results show that with increasing the thickness of the infill plate or using stiffeners around the opening, the ultimate strength of a corrugated steel infill panel with an opening can be equal to or even more than the ultimate strength of that panel without an opening.


2012 ◽  
Vol 626 ◽  
pp. 85-89 ◽  
Author(s):  
Kay Dora Abdul Ghani ◽  
Nor Hayati Hamid

The experimental work on two full-scale precast concrete beam-column corner joints with corbels was carried out and their seismic performance was examined. The first specimen was constructed without steel fiber, while second specimen was constructed by mixed up steel fiber with concrete and placed it at the corbels area. The specimen were tested under reversible lateral cyclic loading up to ±1.5% drift. The experimental results showed that for the first specimen, the cracks start to occur at +0.5% drifts with spalling of concrete and major cracks were observed at corbel while for the second specimen, the initial cracks were observed at +0.75% with no damage at corbel. In this study, it can be concluded that precast beam-column joint without steel fiber has better ductility and stiffness than precast beam-column joint with steel fiber. However, precast beam-column joint with steel fiber has better energy dissipation and fewer cracks at corbel as compared to precast beam-column joint without steel fiber.


Fuel ◽  
2021 ◽  
pp. 122188
Author(s):  
Weiqi Fu ◽  
Jing Yu ◽  
Yang Xiao ◽  
Chenglai Wang ◽  
Bingxiang Huang ◽  
...  

1994 ◽  
Vol 336 ◽  
Author(s):  
A. Scholz ◽  
B. Schröder ◽  
H. Oechsner

ABSTRACTThe interaction mechanisms of keV-electrons with the hydrogenated Amorphous semiconductor are briefly discussed and the differences to the metastable defect creation by photons are set out. Based on the knowlegde of the energy dissipation mechanisms of keV-electrons in the hydrogenated Amorphous semiconductor, a model for the creation of metastable defects by keV-electron irradiation is developed and its quantitative agreement with the experimental results is shown.


2016 ◽  
Vol 64 (3) ◽  
pp. 273-280 ◽  
Author(s):  
Sankar Sarkar

Abstract The paper presents the experimental results of turbulent flow over hydraulically smooth and rough beds. Experiments were conducted in a rectangular flume under the aspect ratio b/h = 2 (b = width of the channel 0.5 m, and h = flow depth 0.25 m) for both the bed conditions. For the hydraulically rough bed, the roughness was created by using 3/8″ commercially available angular crushed stone chips; whereas sand of a median diameter d50 = 1.9 mm was used as the bed material for hydraulically smooth bed. The three-dimensional velocity components were captured by using a Vectrino (an acoustic Doppler velocimeter). The study focuses mainly on the turbulent characteristics within the dip that were observed towards the sidewall (corner) of the channel where the maximum velocity occurs below the free-surface. It was also observed that the nondimensional Reynolds shear stress changes its sign from positive to negative within the dip. The quadrant plots for the turbulent bursting shows that the signs of all the bursting events change within the dip. Below the dip, the probability of the occurrence of sweeps and ejections are more than that of inward and outward interactions. On the other hand, within the dip, the probability of the occurrence of the outward and inward interactions is more than that of sweeps and ejections.


Author(s):  
Abhijit Deshpande ◽  
Marcellin Zahui

Analysis and simulation of an acoustic cloud condensation nuclei counter is presented. The instrument is capable of accurately counting the number of micro scale water droplets impacting a water surface. The sound produced underwater by the water droplets is determined when the droplets strike the water surface with an impact velocity equal to either their terminal or maximum velocity. First, the terminal velocities of the droplets are calculated using Stoke’s law and compared to measured velocities from Gunn and Kinzer. Then the maximum velocities that these droplets can sustain without breaking are calculated as a function of droplet diameter. Second, the sound due to droplet impact is estimated. Due to their size and water surface tension, there is no bubble formation at impact when the droplets are falling with terminal velocities. However conditions for regular bubble entrainments are established and limit velocities are calculated. Assuming that the micro water droplets can be accelerated, the maximum velocities for no bubble entrainments are calculated. The results show that the level of the sound produced by individual micro scale droplet falling with terminal velocity is so small that experimental verification is not possible. However, reasonable level of acoustic energy can be obtained by increasing the impact velocities of the droplets or by measuring the sound radiated by a group of impacting droplets. Finally, the droplets counting process is simulated using a water surface of one centimeter squared and a vertical growth chamber.


2002 ◽  
Vol 9 (3/4) ◽  
pp. 171-187 ◽  
Author(s):  
K.-H. Rädler ◽  
M. Rheinhardt ◽  
E. Apstein ◽  
H. Fuchs

Abstract. In the Forschungszentrum Karlsruhe an experiment has been constructed which demonstrates a homogeneous dynamo as is expected to exist in the Earth's interior. This experiment is discussed within the framework of mean-field dynamo theory. The main predictions of this theory are explained and compared with the experimental results. Key words. Dynamo, geodynamo, dynamo experiment, mean-field dynamo theory, a-effect


2020 ◽  
Vol 160 ◽  
pp. 02002
Author(s):  
Hamidreza Alizadeh Hamedani

This study has been performed to develop our knowledge about marine sources energy extraction. Water in the channel has been simulated in laboratory scale by means of FLUENT software. The turbine tidal flow is generated by a moving disk which applies a pressure decrement with energy dissipation. Free water surface is estimated by means of fluid volume in the model which changes freely. The numerical results illustrate that eddy sequence has been generated after the tidal flow of turbine and a flow acceleration is generated nearby, especially beneath the energy extraction devise. Free water surface drop due to energy extraction is considered in model results that seems a to improve the turbine eddy sequence.


2012 ◽  
Vol 166-169 ◽  
pp. 1824-1829
Author(s):  
W.L. Wei ◽  
B. Lv ◽  
Y.L. Liu ◽  
X.F. Yang

Nested type Fixed-Cone Valve, numerical simulation, energy dissipating, turbulent flow Abstract: In this paper, In this paper, a new type of Fixed-Cone Valve was proposed by improving the conventional type Fixed-Cone Valve .The flow fields of the two kinds of Fixed-Cone Valves were studied by using numerical simulation method .The computed pressure fields and the velocity fields were analyzed ,which shows that under the same conditions ,and by using the nested Fixed-Cone valve, the pressure of the upstream pipe and the cone valve and the average velocity along the downstream pipeline are reduced ,but the rate of energy dissipation is increased.


Sign in / Sign up

Export Citation Format

Share Document