ENERGY AND NITROGEN REQUIREMENTS OF MICROCOCCUS ROSEUS

1963 ◽  
Vol 9 (4) ◽  
pp. 633-642 ◽  
Author(s):  
R. C. Eisenberg ◽  
James B. Evans

A collection of pink-pigmented micrococci has been studied and found to be a relatively homogeneous group that deserve species recognition as Micrococcus roseus. These organisms are salt-tolerant obligate aerobes that usually reduce nitrates and do not hydrolyze gelatin. They can utilize xylose, glucose, fructose, mannose, galactose, sucrose, acetate, pyruvate, lactate, malate, succinate, and gluconate as carbon and energy sources. Most strains also can utilize arabinose, lactose, maltose, glycerol, mannitol, sorbitol, and propionate. A synthetic basal medium has been devised that will give excellent growth of these organisms with glutamic acid as the sole source of nitrogen, carbon, and energy. Two vitamins, biotin and thiamine, are required by all strains, and are the only vitamins in the synthetic medium that was used to study interrelationships between nitrogen and carbon sources. Ammonia can serve as the sole source of nitrogen when glucose, or certain other substrates, is the sole source of carbon and energy. Not all substrates that can supply energy in a complex medium can do so in the synthetic medium with ammonia as the sole source of nitrogen. Some amino acids in addition to glutamate have a limited ability to serve as a source of both carbon and nitrogen. The ability of individual amino acids to serve as a sole source of nitrogen depends upon the nature of the substrate that is present as a carbon and energy source.


Microbiology ◽  
2003 ◽  
Vol 149 (10) ◽  
pp. 2909-2918 ◽  
Author(s):  
Avinash Sonawane ◽  
Ute Klöppner ◽  
Sven Hövel ◽  
Uwe Völker ◽  
Klaus-Heinrich Röhm

The acidic amino acids (Asp, Glu) and their amides (Asn, Gln) are excellent growth substrates for many pseudomonads. This paper presents proteomics data indicating that growth of Pseudomonas fluorescens ATCC 13525 and Pseudomonas putida KT2440 on these amino acids as sole source of carbon and nitrogen leads to the induction of a defined set of proteins. Using mass spectrometry and N-terminal sequencing, a number of these proteins were identified as enzymes and transporters involved in amino acid uptake and metabolism. Most of them depended on the alternative sigma factor σ 54 for expression and were subject to strong carbon catabolite repression by glucose and citrate cycle intermediates. For a subset of the identified proteins, the observed regulatory effects were independently confirmed by RT-PCR. The authors propose that the respective genes (together with others still to be identified) make up a regulon that mediates uptake and utilization of the abovementioned amino acids.



1999 ◽  
Vol 181 (17) ◽  
pp. 5426-5432 ◽  
Author(s):  
Martina M. Ochs ◽  
Chung-Dar Lu ◽  
Robert E. W. Hancock ◽  
Ahmed T. Abdelal

ABSTRACT Pseudomonas aeruginosa can utilize arginine and other amino acids as both carbon and nitrogen sources. Earlier studies have shown that the specific porin OprD facilitates the diffusion of basic amino acids as well as the structurally analogous beta-lactam antibiotic imipenem. The studies reported here showed that the expression of OprD was strongly induced when arginine, histidine, glutamate, or alanine served as the sole source of carbon. The addition of succinate exerted a negative effect on induction ofoprD, likely due to catabolite repression. The arginine-mediated induction was dependent on the regulatory protein ArgR, and binding of purified ArgR to its operator upstream of theoprD gene was demonstrated by gel mobility shift and DNase assays. The expression of OprD induced by glutamate as the carbon source, however, was independent of ArgR, indicating the presence of more than a single activation mechanism. In addition, it was observed that the levels of OprD responded strongly to glutamate and alanine as the sole sources of nitrogen. Thus, that the expression ofoprD is linked to both carbon and nitrogen metabolism ofPseudomonas aeruginosa.



2018 ◽  
Vol 44 (2) ◽  
pp. 285-292
Author(s):  
Sereen Gul ◽  
Mujeeb Ur Rahman ◽  
Mohammad Ajmal ◽  
Abdul Kabir Khan Achakzai ◽  
Asim Iqbal

The effects of various carbon and nitrogen sources were evaluated on production of proteases by Bacillus subtilis IC-5. Both type and concentration of carbon and nitrogen sources influenced the production of proteases. Among the carbon sources glucose was found to be the most effective. It gave maximum production at 2% w/v concentration i.e., 1875 and 950 U/ml, alkaline and neutral protease, respectively. The response of Bacillus subtilis IC-5 towards synthesis and excretion of enzymes varied with the type of nitrogen sources. The addition of organic nitrogen sources to basal medium repressed the synthesis of proteases while the addition of inorganic nitrogen source such as sodium nitrate was found to be the best stimulating for alkaline and neutral protease synthesis. Sodium nitrate enhanced the production up to 62.40 and 10.52% of alkaline and neutral protease, respectively against w.r.t. control.



1955 ◽  
Vol 1 (8) ◽  
pp. 668-674 ◽  
Author(s):  
D. C. Jordan ◽  
C. L. San Clemente

Ammonium chloride was not utilized by three strains of Rhizobium meliloti as the sole source of nitrogen in a sucrose medium, unless either amino or certain non-nitrogenous carboxylic acids were also present. This was also essentially true for the utilization of nitrate, nitrite, purines, and pyrimidines, all of which are potentially able to form ammonia. These results may be interpreted on the assumption that washed cells of alfalfa – sweet clover rhizobia require, for growth initiation in a nitrogen-free medium, either preformed amino acids or compounds such as ammonia and certain carboxylic acids from which amino acids can be synthesized. Since α-ketoglutarate was extremely active in promoting growth in a medium containing ammonium chloride it was implied that the ammonia may be fixed by L-glutamic acid dehydrogenase activity, especially since this particular enzyme was located in these organisms. No aspartase activity could be demonstrated. The ineffective strain differed from the effective strains in that it was unable to use purines or pyrimidines as accessory nitrogen sources in amino acid media. This was a result of strain variation and it was not coupled with the state of ineffectiveness itself. A synthetic medium has been formulated for further growth studies on washed Rhizobium cells and for investigations on auxotrophic mutants of these bacteria.



1961 ◽  
Vol 7 (2) ◽  
pp. 111-117 ◽  
Author(s):  
I. J. McDonald

Production of proteinase(s) by a Micrococcus sp. (A.T.C.C. No. 407) in general was related to the amount of growth. However, addition of 2% sodium chloride to tryptone yeast extract broth resulted in an apparent stimulation of proteinase production without an increase in growth. The salt apparently protected the enzyme since it was found that proteinase preparations were inactivated less rapidly in the presence than in the absence of salt. Although the organism did not require carbohydrate for growth, it utilized maltose but not glucose or other carbohydrates. In the presence of maltose, growth and proteinase production were stimulated. The organism produced proteinase on a minimal synthetic medium containing glutamic acid as the sole source of carbon and nitrogen.



1970 ◽  
Vol 117 (3) ◽  
pp. 573-584 ◽  
Author(s):  
R. H. Dainty ◽  
J. L. Peel

1. Clostridium pasteurianum was grown on a synthetic medium with the following carbon sources: (a) 14C-labelled glucose, alone or with unlabelled aspartate or glutamate, or (b) unlabelled glucose plus 14C-labelled aspartate, glutamate, threonine, serine or glycine. The incorporation of 14C into the amino acids of the cell protein was examined. 2. In both series of experiments carbon from exogenous glutamate was incorporated into proline and arginine; carbon from aspartate was incorporated into glutamate, proline, arginine, lysine, methionine, threonine, isoleucine, glycine and serine. Incorporations from the other exogenous amino acids indicated the metabolic sequence: aspartate → threonine → glycine ⇌ serine. 3. The following activities were demonstrated in cell-free extracts of the organism: (a) the formation of aspartate by carboxylation of phosphoenolpyruvate or pyruvate, followed by transamination; (b) the individual reactions of the tricarboxylic acid route to 2-oxoglutarate from oxaloacetate; glutamate dehydrogenase was not detected; (c) the conversion of aspartate into threonine via homoserine; (d) the conversion of threonine into glycine by a constitutive threonine aldolase; (e) serine transaminase, phosphoserine transaminase, glycerate dehydrogenase and phosphoglycerate dehydrogenase. This last activity was abnormally high. 4. The combined evidence indicates that in C. pasteurianum the biosynthetic role of aspartate and glutamate is generally similar to that in aerobic and facultatively aerobic organisms, but that glycine is synthesized from glucose via aspartate and threonine.



1956 ◽  
Vol 2 (7) ◽  
pp. 747-756 ◽  
Author(s):  
Robert Rabin ◽  
Leonard N. Zimmerman

Some nutritive aspects of proteinase biosynthesis by non-proliferating cells of Streptococcus liquefaciens, strain 31, were investigated by substituting constituents in a basal medium containing casein, lactose, purines, pyrimidines, vitamins, and salts. The casein of the medium could be replaced by a mixture of 12 "essential" amino acids (glutamic acid, histidine, valine, serine, methionine, leucine, isoleucine, arginine, cystine, lysine, tryptophane, and threonine), thus demonstrating that proteinase synthesis can occur in a medium devoid of protein. Proteinase biosynthesis appeared to depend upon an inordinately high concentration of arginine, required a fermentable carbohydrate, and occurred optimally at pH 6.3. Sodium fluoride and iodoacetate did not inhibit the proteinase activity but radically curbed its synthesis.



1975 ◽  
Vol 21 (8) ◽  
pp. 1198-1204 ◽  
Author(s):  
I. J. McDonald ◽  
K. G. Johnson

Ten species of non-pathogenic Neisseria were grown in simple defined liquid media containing amino acids, biotin, nicotinic acid, calcium pantothenate, ferrous sulfate, magnesium sulfate, and potassium phosphate. Two of these Neisseria were induced to grow with glutamic acid as the carbon and nitrogen source. The remaining eight Neisseria grew in glutamic acid medium supplemented with from one to four additional amino acids, lactate, or lactate and glucose. A strain of N. flavescens grew in the absence of added growth factors whereas the remaining nine species of Neisseria required either biotin or nicotinic acid; pantothenate was required by two and was stimulatory for three of these species. Use of carbohydrates by the non-pathogenic Neisseria in synthetic medium was tested. Two strains failed to use any of the 14 carbohydrates tested; one strain used only glucose; the remaining seven strains used fructose, glucose, maltose, and sucrose to varying degrees.



2017 ◽  
Vol 22 (1) ◽  
pp. 31 ◽  
Author(s):  
Eris Septiana ◽  
Partomuan Simanjuntak

Antioxidant is an interesting topic due to their capability to inhibit free radical and prevent damage because of oxidative processes. Endophyt fungi is one of antioxidant compound resources in nature. The low yield to gain antioxidant compound from fungi challenges to look for the composition of media and optimalization of growth conditions. This research aimed to know the effect of medium condition in different carbon and nitrogen sources as well as initial pH towards antioxidant activity of endophyt fungi Bo.Ci.Cl.A3. Shaker fermentation was used on 120 rpm at room temperature for 14 days. The carbon sources were glucose, sucrose, and starch and nitrogen sources were NaNO3, NH4NO3, and yeast extract with initial pH at 5, 7, and 9. Ethyl acetate was used as extractor. The results showed that endophyt fungi can produce secondary metabolite as antioxidant at all variation of fermented media. The nitrogen source of yeast extract could increase antioxidant activity of endophyt fungi Bo.Ci.Cl.A3, while other sources such as nitrogen source, carbon sources, and different initial pH on the basal medium that were used did not give increasing antioxidant activity. The conclusion of this research was the substitution of nitrogen source with yeast extract (3 g/L) on the basal medium Czapek Dox’s Broth could increase antioxidant activity of endophyt fungi Bo.Ci.Cl.A3.



1960 ◽  
Vol 6 (3) ◽  
pp. 355-365 ◽  
Author(s):  
W. A. Taber ◽  
L. C. Vining

Isolates of Claviceps purpurea and Claviceps spp. obtained from various geographical areas were compared for their ability to grow and to produce ergot alkaloids in vitro on various carbon and nitrogen sources. While some differences in utilization of carbon sources for growth were found, there was no observed correlation between utilization of carbohydrates and the capacity to produce ergot alkaloids. The amount of alkaloid produced by different strains depended upon both the carbon and nitrogen sources. In general, those cultures capable of alkaloid production were able to do so on more than one carbon source, but the carbon source allowing greatest production differed from one strain to another. Both producing and non-producing strains could utilize succinic acid as a carbon source for growth, but neither could utilize L-tryptophane as a carbon or nitrogen source for growth.



Sign in / Sign up

Export Citation Format

Share Document