MICROBIOLOGICAL STUDIES ON THE MECHANISM OF ACTION OF SPARSOMYCIN

1966 ◽  
Vol 12 (4) ◽  
pp. 595-604 ◽  
Author(s):  
Edward R. Bannister ◽  
Dale E. Hunt ◽  
Robert F. Pittillo

A primary site of sparsomycin attack in Escherichia coli appears to be inhibition of synthesis of protein, which occurs at concentrations of sparsomycin that do not affect DNA or RNA synthesis. Sparsomycin interferes with the normal excretion of amino acids by E. coli. Some cross-resistance was observed between a culture resistant to sparsomycin and cultures resistant to other inhibitors of protein synthesis.

1966 ◽  
Vol 12 (3) ◽  
pp. 515-520 ◽  
Author(s):  
D. E. Hunt ◽  
R. F. Pittillo ◽  
E. P. Johnson ◽  
F. C. Moncrief

Actinobolin inhibits protein synthesis in Escherichia coli. When the antibiotic is added to a culture at the time of inoculation, RNA synthesis is also inhibited. Inhibition of RNA synthesis appears to be a consequence of inhibition of protein synthesis. Cross-resistance experiments suggest that the mechanism of action of actinobolin differs from that of the other inhibitors of protein synthesis, chloramphenicol and sparsomycin. Phenylalanine prevents the action of actinobolin provided the amino acid and antibiotic are added simultaneously; this effect is not observed if the phenylalanine is added 1 hour after the addition of the antibiotic. Evidence is presented that the mechanism by which phenylalanine prevents inhibition by actinobolin differs from that which has been suggested for azaserine and p-fluorophenylalanine.


1969 ◽  
Vol 15 (2) ◽  
pp. 159-164
Author(s):  
J. J. McEvoy ◽  
W. E. Inniss

An inhibitory substance(s) has been found in S-30 fractions from Proteus vulgaris which prevented an Escherichia coli B cell-free system from incorporating a mixture of 14C-amino acids, L-phenylalanine-14C, or L-lysine-14C into protein, as directed by natural messenger ribonucleic acid, polyuridylic acid, or polyadenylic acid respectively. Similar results were obtained when the inhibitor was isolated from S-100 fractions by using dialysis, concentration of the dialysate by flash evaporation, hydrolysis, evaporation to dryness, dissolution to the original volume in distilled water, and neutralization. The effect of the inhibitor on the various individual reactions involved in protein synthesis was examined. No effect was found on the activation of amino acids as determined by the formation of L-phenylalanine-14C hydroxamate isolated chromatographically or by adenosine triphosphate – pyrophosphate exchange. Also no inhibition of L-phenylalanine-14C attachment to transfer ribonucleic acid occurred. However, ribosome-dependent reactions were markedly inhibited. The mechanism of action of the inhibitor appeared to be the prevention of binding of phenylalanyl-transfer ribonucleic acid to the ribosomes.


1963 ◽  
Vol 41 (1) ◽  
pp. 455-460 ◽  
Author(s):  
S. J. Webb

The effect of desiccation on the ability of Escherichia coli to oxidize lactose has been studied. The enzyme system responsible for lactose oxidation is adaptive in E. coli, and amino acids are required for its synthesis. Of the amino acids required, glutamic and aspartic acids proved to be the most active in stimulating the synthesis of the enzymes. The cells of E. coli lose their ability to oxidize lactose on desiccation but if drying is carried out in the presence of i-inositol this loss is prevented. The findings add support to the hypothesis that the death of a cell on desiccation results from the destruction of a component concerned in protein synthesis.


1963 ◽  
Vol 41 (2) ◽  
pp. 455-460 ◽  
Author(s):  
S. J. Webb

The effect of desiccation on the ability of Escherichia coli to oxidize lactose has been studied. The enzyme system responsible for lactose oxidation is adaptive in E. coli, and amino acids are required for its synthesis. Of the amino acids required, glutamic and aspartic acids proved to be the most active in stimulating the synthesis of the enzymes. The cells of E. coli lose their ability to oxidize lactose on desiccation but if drying is carried out in the presence of i-inositol this loss is prevented. The findings add support to the hypothesis that the death of a cell on desiccation results from the destruction of a component concerned in protein synthesis.


1985 ◽  
Vol 229 (1) ◽  
pp. 173-181 ◽  
Author(s):  
P A Flamée ◽  
W G Verly

The effect of apurinic/apyrimidinic (AP) sites in DNA on RNA and protein synthesis was studied in vitro using T7 coliphage DNA. Initiation of RNA synthesis by Escherichia coli RNA polymerase was synchronized and heparin was used to prevent reinitiation. When the T7 DNA contained AP sites, the rate of RNA synthesis was decreased but it remained higher than the values calculated on the assumption that an AP site in the transcribed strand is a complete block to the enzyme progression. Moreover, after the time taken by an unimpeded enzyme to go from promoter to terminator, the rate of RNA synthesis remained elevated and the number of complete RNA molecules (7000 nucleotides) continued to increase for some time. These results suggest that, if the E. coli RNA polymerase is stopped by an AP site, most often, after a pause, the enzyme resumes elongation of the RNA chain which is continuous over the AP site. Sometimes however, RNA synthesis is definitively interrupted during the pause; the probability of interruption has been estimated to be 0.3 in our experimental conditions. When a nick is placed 5′ to the AP site by an AP endonuclease, the results are similar: most often, the RNA chain is synthesized without interruption past the nick in the template strand. The pause of the E. coli RNA polymerase at this combined lesion appears to be shorter than when the AP site is intact. To investigate whether a nucleotide is placed in the RNA chain in front of the AP site in the template strand by E. coli RNA polymerase, RNA synthesis was taken to completion before using this RNA for protein synthesis and measuring the activity of gene-1 product, T7 RNA polymerase. The result suggests that, after pausing, the E. coli RNA polymerase places a nucleotide in the RNA chain when passing over an AP site. The mechanism of the delayed lethality of T7 coliphages treated with monofunctional alkylating agents, which is due to the appearance of AP sites, is discussed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


1970 ◽  
Vol 7 (2) ◽  
pp. 575-585
Author(s):  
J. B. GRIFFITHS

In a confluent culture of WI-38 cells the membrane area available for nutrient uptake is greatly reduced and the possibility exists that this reduction in uptake capacity of the cell is a contributory factor in contact inhibition. Insulin has been reported by many authors to facilitate glucose uptake and also to stimulate protein, DNA and RNA synthesis, glycolysis, pino-cytosis and growth in cultured cells. The effect of insulin on WI-38 cells was determined, therefore, to find out whether it enabled the cell to escape from contact inhibition of growth. The action of insulin was found to be dependent upon medium composition. Growth and protein synthesis were stimulated in Eagle's minimal essential medium, but not when this medium was supplemented with glucose and glutamine. Apparently insulin is only effective when high-energy compounds become limiting. Whilst insulin did not induce any post-confluent division, the protein content of cells was increased by 30%, and this was correlated with an increased rate of protein synthesis. Despite this increased activity in protein metabolism, the utilization of amino acids was less in the presence of insulin indicating that a control mechanism for more economical utilization of amino acids for protein synthesis was activated by insulin. Insulin had no effect on RNA synthesis, and only a slight inhibitory effect on DNA synthesis. Evidence was produced suggesting that insulin blocked cell division and encouraged differentiation. Glucose uptake and incorporation into the cell was stimulated by insulin, and this was especially noticeable after the cell sheet became confluent. The turnover of labelled glucose and derivatives was also enhanced by insulin and this was accompanied by a much higher rate of lactic acid production. It is concluded that insulin does not overcome contact inhibition and permit post-confluent division, but that it does enable the cell to take up and utilize nutrients more efficiently in confluent cultures with a resultant increase in metabolic activity and cell size.


2019 ◽  
Vol 8 (1) ◽  
pp. 15-23
Author(s):  
Takashi Nakamura ◽  
Emi Takeda ◽  
Tomoko Kiryu ◽  
Kentaro Mori ◽  
Miyu Ohori ◽  
...  

Background: O-phospho-L-serine sulfhydrylase from the hyperthermophilic archaeon Aeropyrum pernix K1 (ApOPSS) is thermostable and tolerant to organic solvents. It can produce nonnatural amino acids in addition to L-cysteine. Objective: We aimed to obtain higher amounts of ApOPSS compared to those reported with previous methods for the convenience of research and for industrial production of L-cysteine and non-natural amino acids. Method: We performed codon optimization of cysO that encodes ApOPSS, for optimal expression in Escherichia coli. We then examined combinations of conditions such as the host strain, plasmid, culture medium, and isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration to improve ApOPSS yield. Results and Discussion: E. coli strain Rosetta (DE3) harboring the expression plasmid pQE-80L with the codon-optimized cysO was cultured in Terrific broth with 0.01 mM IPTG at 37°C for 48 h to yield a 10-times higher amount of purified ApOPSS (650 mg·L-1) compared to that obtained by the conventional method (64 mg·L-1). We found that the optimal culture conditions along with codon optimization were essential for the increased ApOPSS production. The expressed ApOPSS had a 6-histidine tag at the N-terminal, which did not affect its activity. This method may facilitate the industrial production of cysteine and non-natural amino acids using ApOPSS. Conclusion: We conclude that these results could be used in applied research on enzymatic production of L-cysteine in E. coli, large scale production of non-natural amino acids, an enzymatic reaction in organic solvent, and environmental remediation by sulfur removal.


Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 255 ◽  
Author(s):  
Sviatlana Smolskaya ◽  
Yaroslav Andreev

More than two decades ago a general method to genetically encode noncanonical or unnatural amino acids (NAAs) with diverse physical, chemical, or biological properties in bacteria, yeast, animals and mammalian cells was developed. More than 200 NAAs have been incorporated into recombinant proteins by means of non-endogenous aminoacyl-tRNA synthetase (aa-RS)/tRNA pair, an orthogonal pair, that directs site-specific incorporation of NAA encoded by a unique codon. The most established method to genetically encode NAAs in Escherichia coli is based on the usage of the desired mutant of Methanocaldococcus janaschii tyrosyl-tRNA synthetase (MjTyrRS) and cognate suppressor tRNA. The amber codon, the least-used stop codon in E. coli, assigns NAA. Until very recently the genetic code expansion technology suffered from a low yield of targeted proteins due to both incompatibilities of orthogonal pair with host cell translational machinery and the competition of suppressor tRNA with release factor (RF) for binding to nonsense codons. Here we describe the latest progress made to enhance nonsense suppression in E. coli with the emphasis on the improved expression vectors encoding for an orthogonal aa-RA/tRNA pair, enhancement of aa-RS and suppressor tRNA efficiency, the evolution of orthogonal EF-Tu and attempts to reduce the effect of RF1.


Sign in / Sign up

Export Citation Format

Share Document