Inactivation of chloramphenicol by Gram-negative microorganisms

1968 ◽  
Vol 14 (8) ◽  
pp. 891-899 ◽  
Author(s):  
David Sompolinsky ◽  
Ruth Ziegler-Schlomowitz ◽  
Dora Herczog

Two derivative strains of Escherichia coli with high-level resistance to chloramphenicol, one carrying an episomal resistance factor and the other a chromosomal mutant, were both shown to be potent inactivators of the drug. When 1 mM chloramphenicol was added to an exponential culture in minimal medium, growth was halted until 85–90% of the drug was inactivated by acylation. At this state the drug was essentially monoacylated. During and after growth, esterification of the second alcoholic group occurred, though at a slower rate. Arylamines, in amounts up to 10% of chloramphenicol equivalents, were demonstrated in the growth medium after 1–3 days' incubation.With an acetateless mutant of Escherichia coli K12, carrying a resistance factor, it was shown that 5–6 moles of acetate was consumed for every mole of chloramphenicol acylated.Inactivation of chloramphenicol by Gram-negative organisms from infections in hospitalized patients was also examined. Among 103 strains susceptible to chloramphenicol, none produced considerable amounts of chloramphenicol esters. The same was the case with 14 resistant strains of Pseudomonas. Of 134 other resistant organisms examined, including strains of Escherichia, Proteus, Klebsiella, Salmonella, and Shigella, 133 were producers of chloramphenicol esters, and in most cases the drug was partly or entirely diacylated.

1992 ◽  
Vol 109 (3) ◽  
pp. 453-462 ◽  
Author(s):  
Lin-Li Chang ◽  
Shui-Feng Chang ◽  
Teh-Yuan Chow ◽  
Wen-Jeng Wu ◽  
Jong-Chou Chang

SUMMARYBetween July 1987 and June 1989, 1054 urinary isolates of enterobacteria from Kaohsiung, Taiwan were studied for their trimethoprim resistance. Trimethoprim resistance was defined as MIC greater than 4 μg/ml and high-level resistance by MIC greater than 1000 μg/ml. The incidence of trimethoprim resistance increased from 33·6% in 1987 to 42·1% in 1989. Among the resistant strains studied, 90% were resistant to high levels of trimethoprim. An increase in the proportion of resistant strains (33·9–46·3%) exhibiting high-level non-transferable trimethoprim resistance was noted. The distribution of the dihydrofolate reductase (DHFR) genes by colony hybridization in 374 trimethoprim-resistant isolates revealed the presence of type I and type V DHFR genes in most of these isolates (45·4% and 10·4% respectively). Type I was predominant inEscherichia coliwhereas type V was frequently seen inEnterobacterspp. None showed homology with the type II and type III DHFR probe DNA. In addition, transposon Tn7 was present in 7·8% of 374 trimethoprim-resistant enterobacteria.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Seth M. Daly ◽  
Carolyn R. Sturge ◽  
Christina F. Felder-Scott ◽  
Bruce L. Geller ◽  
David E. Greenberg

ABSTRACT In late 2015, the first example of a transferrable polymyxin resistance mechanism in Gram-negative pathogens, MCR-1, was reported. Since that report, MCR-1 has been described to occur in many Gram-negative pathogens, and the mechanism of MCR-1-mediated resistance was rapidly determined: an ethanolamine is attached to lipid A phosphate groups, rendering the membrane more electropositive and repelling positively charged polymyxins. Acquisition of MCR-1 is clinically significant because polymyxins are frequently last-line antibiotics used to treat extensively resistant organisms, so acquisition of this mechanism might lead to pan-resistant strains. Therefore, the ability to inhibit MCR-1 and restore polymyxin sensitivity would be an important scientific advancement. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) are antisense molecules that were designed to target mRNA, preventing translation. Peptide conjugation enhances cellular entry, but they are positively charged, so we tested our lead antibacterial PPMOs by targeting an essential Escherichia coli gene, acpP, and demonstrated that they were still effective in mcr-1-positive E. coli strains. We then designed and synthesized two PPMOs targeted to mcr-1 mRNA. Five clinical mcr-1-positive E. coli strains were resensitized to polymyxins by MCR-1 inhibition, reducing MICs 2- to 16-fold. Finally, therapeutic dosing of BALB/c mice with MCR-1 PPMO combined with colistin in a sepsis model reduced morbidity and bacterial burden in the spleen at 24 h and offered a survival advantage out to 5 days. This is the first example of a way to modulate colistin resistance with an antisense approach and may be a viable strategy to combat this globally emerging antibiotic resistance threat. IMPORTANCE Polymyxin use has been increasing as a last line of defense against Gram-negative pathogens with high-level resistance mechanisms, such as carbapenemases. The recently described MCR-1 is a plasmid-mediated mechanism of resistance to polymyxins. MCR-1 is currently found in Gram-negative organisms already possessing high-level resistance mechanisms, leaving clinicians few or no antibacterial options for infections caused by these strains. This study utilizes antisense molecules that target mRNA, preventing protein translation. Herein we describe antisense molecules that can be directly antibacterial because they target genes essential to bacterial growth or blockade of MCR-1, restoring polymyxin sensitivity. We also demonstrate that MCR-1 antisense molecules restore the efficacies of polymyxins in mouse models of E. coli septicemia. Considering all things together, we demonstrate that antisense molecules may be effective therapeutics either alone when they target an essential gene or combined with antibiotics when they target specific resistance mechanisms, such as those seen with MCR-1. IMPORTANCE Polymyxin use has been increasing as a last line of defense against Gram-negative pathogens with high-level resistance mechanisms, such as carbapenemases. The recently described MCR-1 is a plasmid-mediated mechanism of resistance to polymyxins. MCR-1 is currently found in Gram-negative organisms already possessing high-level resistance mechanisms, leaving clinicians few or no antibacterial options for infections caused by these strains. This study utilizes antisense molecules that target mRNA, preventing protein translation. Herein we describe antisense molecules that can be directly antibacterial because they target genes essential to bacterial growth or blockade of MCR-1, restoring polymyxin sensitivity. We also demonstrate that MCR-1 antisense molecules restore the efficacies of polymyxins in mouse models of E. coli septicemia. Considering all things together, we demonstrate that antisense molecules may be effective therapeutics either alone when they target an essential gene or combined with antibiotics when they target specific resistance mechanisms, such as those seen with MCR-1.


1977 ◽  
Vol 78 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Jean M. Dolby ◽  
Pauline Honour ◽  
H. B. Valman

SUMMARYHuman milk has a bacteriostatic effect on Escherichia coli in vitro. The milks of 40 mothers were tested for this effect against E. coli isolated from their stools, from those of their own babies, and from those of babies not breast-fed. The milks had a direct bacteriostatic effect, not dependent on complement, on some but not all the strains of E. coli. Breast-fed babies receiving supplementary bottle feeds were colonized with milk-resistant strains, whereas bottle-fed babies and, surprisingly, babies completely breast-fed were colonized equally with milk-sensitive and milk-resistant strains, as were the mothers. These results suggest that the bacteriostatic effect of human milk, demonstrable in vitro does sometimes operate in vivo.The antibacterial activity of human milk is not influenced by the O, H or K antigens of E. coli and is effective against other Gram-negative organisms, e.g. Salmonella, Klebsiella, Proteus.


2002 ◽  
Vol 184 (19) ◽  
pp. 5495-5501 ◽  
Author(s):  
Sean W. Jordan ◽  
John E. Cronan,

ABSTRACT One of the mutants (slr7 mutant) of a wild-type Escherichia coli strain resistant to selenolipoic acid reported previously (K. E. Reed, T. W. Morris, and J. E. Cronan, Jr., Proc. Natl. Acad. Sci. USA 91:3720-3724, 1994) unexpectedly grew on minimal medium following transductional introduction of a lipA null mutation. We report that the slr7 strain carries a duplication of the lip chromosomal region that causes the phenotype of the mutant strain.


Author(s):  
Saeed Sharifi ◽  
Bita Bakhshi ◽  
Shahin Najar-peerayeh

Abstract Background Campylobacter resistance to antimicrobial agents is regarded as a major concern worldwide. The aim of this study was to investigate the expression of the CmeABC efflux pump and the RAPD-PCR pattern in drug-resistant Campylobacter isolates. Methods A total of 283 stool specimens were collected from children under the age of five with diarrhea. The minimum inhibitory concentration (MIC) of tetracycline and ciprofloxacin was determined by broth microdilution method and E-test, respectively. Detection of tetracycline and ciprofloxacin determinants was done by amplification of tetO gene and PCR-sequencing of the gyrA gene. The cmeABC transcriptional expression was analyzed by Real-time (RT)-PCR. Clonal correlation of resistant strains was determined by RAPD-PCR genotyping. Results Out of 283 fecal samples, 20 (7.02%) samples were positive for Campylobacter spp. Analysis of duplex PCR assay of the cadF gene showed that 737 and 461 bp amplicons were corresponding to Campylobacter jejuni and Campylobacter coli, respectively. All of the 17 phenotypically tetracycline-resistant Campylobacter isolates harbored the tetO gene. Also, four phenotypically ciprofloxacin-resistant Campylobacter isolates had a point mutation at codon 257 of the gyrA gene (ACA to ATA; Thr > Ile). High-level expression of the cmeA gene was observed in ciprofloxacin-resistant and high-level tetracycline-resistant Campylobacter isolates, suggesting a positive correlation between the cmeA gene expression level and tetracycline resistance level. Moreover, a statistically significant difference was observed in the cmeA gene expression between ciprofloxacin-resistant and ciprofloxacin-susceptible strains, which signifies the crucial contribution of the efflux pump in conferring multiple drug resistance phenotype among Campylobacter spp. RAPD analysis of Campylobacter isolates exhibited 16 different patterns. Simpsone`s diversity index of RAPD-PCR was calculated as 0.85, showing a high level of homogeneity among the population; however, no clear correlation was detected among tetracycline and/or ciprofloxacin resistant isolates. Conclusion Significant contribution of the CmeABC efflux pump in conferring high-level resistance to tetracycline and ciprofloxacin was observed in C. jejuni and C. coli clinical isolates. The resistant phenotype is suggested to be mediated by CmeABC efflux pumps, the tetO gene, and point mutation of the gyrA gene. Genotyping revealed no clonal correlation among resistant strains, indicating distinct evolution of tetracycline and ciprofloxacin resistant genotypes among the isolates.


1998 ◽  
Vol 64 (12) ◽  
pp. 5042-5045 ◽  
Author(s):  
Amit Gupta ◽  
Maria Maynes ◽  
Simon Silver

ABSTRACT Silver resistance of sensitive Escherichia coli J53 and resistance plasmid-containing J53(pMG101) was affected by halides in the growth medium. The effects of halides on Ag+ resistance were measured with AgNO3 and silver sulfadiazine, both on agar and in liquid. Low concentrations of chloride made the differences in MICs between sensitive and resistant strains larger. High concentrations of halides increased the sensitivities of both strains to Ag+.


Pathogens ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 75 ◽  
Author(s):  
Wadha Alfouzan ◽  
Rita Dhar ◽  
David Nicolau

Limited data are available on susceptibilities of these organisms to some of the recently made accessible antimicrobial agents. The in vitro activities of newer antibiotics, such as, ceftolozane/tazobactam (C/T) and ceftazidime/avibactam (CZA) along with some “older” antibiotics, for example fosfomycin (FOS) and colistin (CL) were determined against selected strains (resistant to ≥ 3 antimicrobial agents) of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Minimum inhibitory concentrations (MIC) were determined by Clinical and Laboratory Standards Institute microbroth dilution. 133 isolates: 46 E. coli, 39 K. pneumoniae, and 48 P. aeruginosa were tested. Results showed that E. coli isolates with MIC50/90, 0.5/1 μ g / mL for CL; 4/32 μ g / mL for FOS; 0.25/32 μ g / mL for C/T; 0.25/8 μ g / mL for CZA, exhibited susceptibility rates of 95.7%, 97.8%, 76.1%, and 89.1%, respectively. On the other hand, K. pneumoniae strains with MIC50/90, 0.5/1 μ g / mL for CL; 256/512 μ g / mL for FOS; 2/128 μ g / mL for C/T; 0.5/128 μ g / mL for CZA showed susceptibility rates of 92.3%, 7.7%, 51.3%, and 64.1%, respectively. P. aeruginosa isolates with MIC50/90, 1/1 μ g / mL for CL; 128/128 μ g / mL for C/T; 32/64 μ g / mL for CZA presented susceptibility rates of 97.9%, 33.3%, and 39.6%, respectively. Higher MICs were demonstrated against most of the antibiotics. However, CL retained efficacy at low MICs against most of the isolates tested.


2020 ◽  
Vol 6 (23) ◽  
pp. eaaz6333 ◽  
Author(s):  
Mikhail Bogdanov ◽  
Kyrylo Pyrshev ◽  
Semen Yesylevskyy ◽  
Sergey Ryabichko ◽  
Vitalii Boiko ◽  
...  

The distribution of phospholipids across the inner membrane (IM) of Gram-negative bacteria is unknown. We demonstrate that the IMs of Escherichia coli and Yersinia pseudotuberculosis are asymmetric, with a 75%/25% (cytoplasmic/periplasmic leaflet) distribution of phosphatidylethanolamine (PE) in rod-shaped cells and an opposite distribution in E. coli filamentous cells. In initially filamentous PE-lacking E. coli cells, nascent PE appears first in the periplasmic leaflet. As the total PE content increases from nearly zero to 75%, cells progressively adopt a rod shape and PE appears in the cytoplasmic leaflet of the IM. The redistribution of PE influences the distribution of the other lipids between the leaflets. This correlates with the tendency of PE and cardiolipin to regulate antagonistically lipid order of the bilayer. The results suggest that PE asymmetry is metabolically controlled to balance temporally the net rates of synthesis and translocation, satisfy envelope growth capacity, and adjust bilayer chemical and physical properties.


2007 ◽  
Vol 56 (7) ◽  
pp. 937-939 ◽  
Author(s):  
Naira Elane Moreira de Oliveira ◽  
Ana Paula Couto Marques Cardozo ◽  
Elizabeth de Andrade Marques ◽  
Kátia Regina Netto dos Santos ◽  
Marcia Giambiagi deMarval

Meticillin-resistant Staphylococcus aureus isolates were classified into three mupirocin susceptibility groups by the disc diffusion method using 5 and 200 μg mupirocin discs. The zone diameter observed for a 5 μg disc distinguished MupS from the resistant strains (either MupRL or MupRH). On the other hand, a 200 μg disc distinguished the high-resistance MupRH strains from the other two (MupS or MupRL). Thus, the concomitant use of 5 and 200 μg mupirocin discs allowed the clear distinction among the three mupirocin susceptibility groups, MupS, MupRL or MupRH.


Sign in / Sign up

Export Citation Format

Share Document