Patterns of extension growth of the fission yeast, Schizosaccharomyces pombe

1986 ◽  
Vol 32 (6) ◽  
pp. 528-530 ◽  
Author(s):  
H. Miyata ◽  
M. Miyata ◽  
Byron F. Johnson

The growth of sausage-shaped cells of the fission yeast, Schizosaccharomyces pombe (strain NCYC 132), was followed in the second or third cycle by time-lapse photomicrography. Experimental cells were harvested from glucose-limited (0.2% glucose EMM3) chemostat culture (dilution rate, 0.125/h) and were plated onto a slide with EMM3 agar (2% glucose). By observing their extension patterns, we found some rules of extension growth. Thus, (1) all sibs with walls newly formed in the previous cycle, whose progenitor cells grew at the old end (followed Mitchison's rule), grow at the old end (also follow Mitchison's rule). (2) Sibs with old walls whose progenitor cell followed Mitchison's rule behave in one of three ways: (i) growth at the old end (follow Mitchison's rule); (ii) growth at the new end (violate Mitchison's rule); or (iii) growth at both ends (bipolar). (3) Both sibs whose progenitor grew at both ends (bipolar) always grow at the old end (follow Mitchison's rule).

1990 ◽  
Vol 36 (6) ◽  
pp. 390-394 ◽  
Author(s):  
Hisao Miyata ◽  
Machiko Miyata ◽  
Byron F. Johnson

The patterns of end growth of individual cells of Schizosaccharomyces pombe, wild-type cells (strain 972 h−), cells exposed to 8 mM hydroxyurea, and cdc mutants (cdc11-123 and cdc2-33), were investigated by time-lapse photomicrography. It was reconfirmed that there are three patterns of end growth: cells growing at the old end, at the new end, and at both ends from the beginning of the cell cycle. Cells that initiated growth at the old (new) end increased their growth rate at the new (old) end and became constant in their growth rate at the old (new) end when cells had their growth rate higher than a critical value: 0.08, 0.09, 0.08, and 0.11 μm/min in wild-type cells, cells exposed to hydroxyurea, cdc11-123 cells, and cdc2-33 cells, respectively. The critical value is proportional to the doubling time in length. Key words: extension, growth, fission yeast.


1977 ◽  
Vol 24 (1) ◽  
pp. 51-67 ◽  
Author(s):  
P.A. Fantes

Steady-state and perturbed cells of Schizosaccharomyces pombe have been observed through several division cycles by time-lapse photomicrography. Perturbed cells were produced by the use of a conditional cell division cycle mutant in which nuclear division is reversibly blocked at high temperature. These experiments show that in both populations cell length at division and cell cycle duration are homeostatically controlled, probably by a primary size-control mechanism. Cycle time is indirectly controlled, as cells which have an extended cycle are on average larger at division, so that duaghters of such cells need to grow by a smaller amount and for a shorter period, before dividing again. In general, deviations from the mean are corrected within a single cycle, but in the case of very long cells the control breaks down because the cycle cannot be shortened by more than a quarter under the conditions used. These cells take more than one cycle to return to normal.


2020 ◽  
Vol 219 (6) ◽  
Author(s):  
Magdalena Marek ◽  
Vincent Vincenzetti ◽  
Sophie G. Martin

Sterols are crucial components of biological membranes, which are synthetized in the ER and accumulate in the plasma membrane (PM). Here, by applying a genetically encoded sterol biosensor (D4H), we visualize a sterol flow between PM and endosomes in the fission yeast Schizosaccharomyces pombe. Using time-lapse and correlative light-electron microscopy, we found that inhibition of Arp2/3-dependent F-actin assembly promotes the reversible relocalization of D4H from the PM to internal sterol-rich compartments (STRIC) labeled by synaptobrevin Syb1. Retrograde sterol internalization to STRIC is independent of endocytosis or an intact Golgi, but depends on Ltc1, a LAM/StARkin-family protein localized to ER-PM contact sites. The PM in ltc1Δ cells over-accumulates sterols and upon Arp2/3 inhibition forms extended ER-interacting invaginations, indicating that sterol transfer contributes to PM size homeostasis. Anterograde sterol movement from STRIC is independent of canonical vesicular trafficking but requires Arp2/3, suggesting a novel role for this complex. Thus, transfer routes orthogonal to vesicular trafficking govern the flow of sterols in the cell.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1190-1190
Author(s):  
Vanessa M Scanlon ◽  
Maria Kochugaeva ◽  
Juliana Xavier-Ferrucio ◽  
Yi-Chien Lu ◽  
Nayoung Kwon ◽  
...  

The molecular mechanisms underlying lineage commitment of stem and progenitor cells have implications for deriving specific cell types in vitro for regenerative medicine purposes and elucidating the aberrant pathways responsible for pathological conditions. We investigated Megakaryocytic-Erythroid Progenitors (MEP) commitment to the megakaryocytic (Mk) and erythroid (E) lineages as a model of cell fate decisions. Colony forming unit (CFU) assays are used to test the functional output, or lineage potential, of progenitor cell populations. As single progenitor cells proliferate, their progeny remain near each other to form a colony. This potential is deduced from the mature cell types comprising the colony. However, this assay has several limitations: 1) there is an assumption that each colony arose from a single progenitor cell based on the low probability that individual progenitors would form overlapping colonies when plated sparsely; 2) there is a surfeit of kinetic data about the colony forming cells that is not collected with a single end-point; and 3) the outcome may be misleading if there is selective loss of specific cell types of early committed progeny prior to the endpoint. To overcome these limitations, we developed a time-lapse microscopy and lineage tracing approach to visualize single sorted MEP, as well as committed Megakaryocytic progenitors (MkP) and Erythroid progenitors (ErP), as they proliferate, specify and progress down either the Mk or E lineages. We plated primary adult human MEP (Sanada and Xavier-Ferrucio, et al. Blood, 2016) at low density in semisolid media supplemented with cytokines in a MatTek plate under a coverslip to minimize focal range and support colony formation for up to 14 days. The plated cells were imaged with an Olympus VivaView. Fluorescently conjugated anti-CD41 (a marker of Mk) and anti-CD235a (a marker of E) were added to the culture dishes at the end to confirm the lineage of each cell in the colonies. The average time from plating to the first division was 38 h, and not significantly different between MEP, ErP, and MkP. We optimized the image acquisition settings to permit accurate tracking of the plated cells and their progeny for up to 11 days. Average colony forming efficiency was 75%, which was equal to unimaged CFU assays, indicating minimal phototoxicity. Acquired images were stacked into time-lapse videos and automatically tracked with the Baxter Algorithm (Magnusson et al. IEEE Trans Med Imaging, 2015). After manual segmentation and track correction, lineage trees were generated for each colony (Figure 1). We exported quantifiable features of the cells including the time between cell divisions and velocity of each cell from the algorithm. We defined cells that give rise to only CD41-labeled cells as committed MkP, cells that give rise to only CD235-labeled cells as ErP, and cells that give rise to at least one progeny of both as MEP. However, these progenitor definitions are based on an inaccurate assumption that fate reflects potential, since a bipotent cell may stochastically give rise to progeny that are committed to a single lineage. To convert fate to potential, we first need to identify the precise period of commitment to more accurately define MEP, MkP, and ErP in our culture system. To achieve this, we are developing a mathematical model that can predict the potential of cells based on quantifiable features that are measured form the time-lapse images and are significantly different between MEP, MkP, and ErP. Utilizing statistical tools, we have identified that the duration of the cell cycle and the velocity of single progenitor cells along with their lineage history, permit predictions of progenitor potential and provide several novel insights into the process of lineage commitment. We found that ErP have a significantly shortened cell cycle duration and slower velocity compared to MkP, while MEP have the longest cell cycle and an intermediate velocity until undergoing their fate decisions (Figures 2 and 3). With this time-lapse imaging approach, we hope to better investigate molecular mechanisms that direct fate decisions of multipotent progenitor cells. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


2002 ◽  
Vol 3 (3) ◽  
pp. 221-225

In recent months a bumper crop of genomes has been completed, including the fission yeast (Schizosaccharomyces pombe) and rice (Oryza sativa). Two large-scale studies ofSaccharomyces cerevisiaeprotein complexes provided a picture of the eukaryotic proteome as a network of complexes. Amongst the other stories of interest was a demonstration that proteomic analysis of blood samples can be used to detect ovarian cancer, perhaps even as early as stage I.


1986 ◽  
Vol 83 (21) ◽  
pp. 8253-8257 ◽  
Author(s):  
L. Clarke ◽  
H. Amstutz ◽  
B. Fishel ◽  
J. Carbon

Sign in / Sign up

Export Citation Format

Share Document