Cellulose fatty acid esters as sustainable film materials – effect of side chain structure on barrier and mechanical properties

RSC Advances ◽  
2015 ◽  
Vol 5 (98) ◽  
pp. 80702-80708 ◽  
Author(s):  
Tuomas Kulomaa ◽  
Jorma Matikainen ◽  
Pirkko Karhunen ◽  
Mikko Heikkilä ◽  
Juha Fiskari ◽  
...  

Bio-based films were prepared by acylation of cellulose with saturated, unsaturated and branched fatty acids. The products showed increased thermal stability, low water vapour transmission rates and enhanced tensile and elastic properties.

1997 ◽  
Vol 43 (4) ◽  
pp. 384-390 ◽  
Author(s):  
Alexander Gorkovenko ◽  
Jinwen Zhang ◽  
Richard A. Gross ◽  
Alfred L. Allen ◽  
David L. Kaplan

Strategies were investigated to modulate the side chain structure of emulsans formed by Acinetobacter calcoaceticus RAG-1. Analysis of emulsan fatty acid side chain groups by gas chromatography – mass spectrometry (GC–MS) revealed that by providing the exogenous n-alkanoic fatty acids 15:0, 16:0, and 17:0, emulsan analogs were formed with 53, 46, and 44 mol%, respectively, of fatty acid substituents with chain lengths equal to that of the carbon source. In contrast, the increase in emulsan fatty acids of chain lengths less than 15 or greater than 17 by providing corresponding shorter and longer chain length fatty acids as carbon sources was not substantial. When [1-13C]-labeled (99% enriched) palmitic acid was used as a carbon source along with acetate, analysis of m/z 75/14 and 87/88 isotopomer ratios by GC-MS indicated that 84 and 86% of the 16:0 and 16:1 (9-cis) side groups, respectively, were incorporated intact from the 16:0 carbon source. The percentage of 14-, 15-, 16-, 17-, and 18-carbon chain length fatty acid esters that were monounsaturated were 11, 26, 50, 70, and 85%, respectively. Based on the observed percentage of unsaturated chain length dependence and almost identical enrichment at C-1 of 16:0 and 16:1 (9-cis) side groups from [1-13C]-labeled experiments, it was concluded that desaturation of preformed n-alkanoic acids was the predominant mechanism of their formation. Further work established correlations between side chain structure and product emulsification specificity/activity, so that bioengineered emulsans with improved selectivity can now be formed.Key words: emulsan, Acinetobacter calcoaceticus RAG-1, fatty acids, direct incorporation, emulsification activity.


Cellulose ◽  
2016 ◽  
Vol 24 (2) ◽  
pp. 505-517 ◽  
Author(s):  
Pia Willberg-Keyriläinen ◽  
Jari Vartiainen ◽  
Ali Harlin ◽  
Jarmo Ropponen

2021 ◽  
Vol 8 ◽  
Author(s):  
Teresa Kellerer ◽  
Karin Kleigrewe ◽  
Beate Brandl ◽  
Thomas Hofmann ◽  
Hans Hauner ◽  
...  

Background: Fatty acid esters of hydroxy fatty acids (FAHFAs) are a group of fatty acids with potential anti-inflammatory and anti-diabetic effects. The blood levels of FAHFAs and their regulation in humans have hardly been studied.Objective: We aimed to investigate serum FAHFA levels in well-characterized human cohorts, to evaluate associations with age, sex, BMI, weight loss, diabetic status, and diet.Methods: We analyzed levels of stearic-acid-9-hydroxy-stearic-acid (9-SAHSA), oleic-acid-9-hydroxy-stearic-acid (9-OAHSA) and palmitic-acid-9-hydroxy-palmitic-acid (9-PAHPA) as well as different palmitic acid-hydroxy-stearic-acids (PAHSAs) by HPLC-MS/MS with the use of an internal standard in various cohorts: A cohort of different age groups (18–25y; 40–65y; 75–85y; Σn = 60); severely obese patients undergoing bariatric surgery and non-obese controls (Σn = 36); obese patients with and without diabetes (Σn = 20); vegetarians/vegans (n = 10) and omnivores (n = 9); and young men before and after acute overfeeding with saturated fatty acids (SFA) (n = 15).Results: Omnivores had substantially higher FAHFA levels than vegetarians/vegans [median (25th percentile; 75th percentile) tFAHFAs = 12.82 (7.57; 14.86) vs. 5.86 (5.10; 6.71) nmol/L; P < 0.05]. Dietary overfeeding by supplementation of SFAs caused a significant increase within 1 week [median tFAHFAs = 4.31 (3.31; 5.27) vs. 6.96 (6.50; 7.76) nmol/L; P < 0.001]. Moreover, obese patients had lower FAHFA levels than non-obese controls [median tFAHFAs = 3.24 (2.80; 4.30) vs. 5.22 (4.18; 7.46) nmol/L; P < 0.01] and surgery-induced weight loss increased 9-OAHSA level while other FAHFAs were not affected. Furthermore, significant differences in some FAHFA levels were found between adolescents and adults or elderly, while no differences between sexes and between diabetic and non-diabetic individuals were detected.Conclusions: FAHFA serum levels are strongly affected by high SFA intake and reduced in severe obesity. Age also may influence FAHFA levels, whereas there was no detectable relation with sex and diabetic status. The physiological role of FAHFAs in humans remains to be better elucidated.Trial Registration: All studies referring to these analyses were registered in the German Clinical Trial Register (https://www.drks.de/drks_web/) with the numbers DRKS00009008, DRKS00010133, DRKS00006211, and DRKS00009797.


2018 ◽  
Vol 458 ◽  
pp. 67-72 ◽  
Author(s):  
Magdalena Hümmer ◽  
Selin Kara ◽  
Andreas Liese ◽  
Ina Huth ◽  
Jens Schrader ◽  
...  

2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Mohd Basyaruddin Abdul Rahman ◽  
Siti Salhah Othman ◽  
Noor Mona Md Yunus

The enzymatic selectivity of Lipase from Candida rugosa immobilized onto a calcined layered double hydroxide (CLDHs-CRL) towards the chain-length of fatty acids and alcohols in the synthesis of fatty acid esters was investigated.  The results showed that CMAN-CRL catalyzed the esterification process with fatty acids of medium chain lengths (C10-C14) effectively while, CNAN-CRL and CZAN-CRL exhibited high percentage conversion in fatty acids with carbon chain lengths of C8-C12 and C10-C18, respectively. In the alcohol selectivity study, CMAN-CRL showed high selectivity toward alcohols with carbon chain lengths of C4, C6 and C10.  On the other hand, both CNAN-CRL and CZAN-CRL exhibited rather low selectivity towards longer carbon chain length of alcohols. 


Cosmetics ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 45 ◽  
Author(s):  
Dorota Dobler ◽  
Thomas Schmidts ◽  
Sören Wildenhain ◽  
Ilona Seewald ◽  
Michael Merzhäuser ◽  
...  

Human skin is a complex ecosystem and is host to a large number of microorganisms. When the bacterial ecosystem is balanced and differentiated, skin remains healthy. However, the use of cosmetics can change this balance and promote the appearance of skin diseases. The skin’s microorganisms can utilize some cosmetic components, which either promote their growth, or produce metabolites that influence the skin environment. In this study, we tested the ability of the Malassezia species and some bacterial strains to assimilate substances frequently used in dermal formulations. The growth capability of microorganisms was determined and their lipase activity was analyzed. The growth of all Malassezia spp. in the presence of free acids, free acid esters, and fatty alcohols with a fatty chain length above 12 carbon atoms was observed. No growth was observed in the presence of fatty alcohol ethers, secondary fatty alcohols, paraffin- and silicon-based substances, polymers, polyethylene glycols, quaternary ammonium salts, hydroxy fatty acid esters, or fatty acids and fatty acid esters with a fatty chain length shorter than 12 carbon atoms. The hydrolysis of esters by Malassezia lipases was detected using High Performance Thin Layer Chromatography (HPTLC). The production of free fatty acids as well as fatty alcohols was observed. The growth promotion or inhibition of bacterial strains was only found in the presence of a few ingredients. Based on these results, formulations containing microbiome inert ingredients were developed.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 524 ◽  
Author(s):  
Juan P. Rodríguez ◽  
Carlos Guijas ◽  
Alma M. Astudillo ◽  
Julio M. Rubio ◽  
María A. Balboa ◽  
...  

Hydroxy fatty acids are known to cause cell cycle arrest and apoptosis. The best studied of them, 9-hydroxystearic acid (9-HSA), induces apoptosis in cell lines by acting through mechanisms involving different targets. Using mass spectrometry-based lipidomic approaches, we show in this study that 9-HSA levels in human colorectal tumors are diminished when compared with normal adjacent tissue. Since this decrease could be compatible with an escape mechanism of tumors from 9-HSA-induced apoptosis, we investigated different features of the utilization of this hydroxyfatty acid in colon. We show that in colorectal tumors and related cell lines such as HT-29 and HCT-116, 9-HSA is the only hydroxyfatty acid constituent of branched fatty acid esters of hydroxyfatty acids (FAHFA), a novel family of lipids with anti-inflammatory properties. Importantly, FAHFA levels in tumors are elevated compared with normal tissue and, unlike 9-HSA, they do not induce apoptosis of colorectal cell lines over a wide range of concentrations. Further, the addition of 9-HSA to colon cancer cell lines augments the synthesis of different FAHFA before the cells commit to apoptosis, suggesting that FAHFA formation may function as a buffer system that sequesters the hydroxyacid into an inactive form, thereby restricting apoptosis.


Sign in / Sign up

Export Citation Format

Share Document