Thermal Inactivation of Avian Liver and Muscle Fructose 1,6-Diphosphatases in the Presence of Fructose 1,6-Diphosphate, AMP, and Divalent Cations

1974 ◽  
Vol 52 (8) ◽  
pp. 670-678 ◽  
Author(s):  
Ronald R. Marquardt ◽  
J. P. Olson

The effects at various pH levels of fructose 1,6-diphosphate (FDP), AMP, CaCl2, MnCl2, and/or MgCl2 on the thermal stability of pure forms of avian liver and muscle fructose 1,6-diphosphatases were investigated. Both enzymes were more stable when stored at 20 °C than at 2 °C. Maximum stabilities of the two enzymes when incubated at various temperatures in a Tris buffer occurred at approximately pH 6. All of the above compounds when added to a pH 7.5 Tris buffer markedly increased the thermal stabilities of both enzymes. Individually, FDP provided the highest degree of protection for the muscle enzyme whereas MnCl2 was most effective with the liver enzyme; in all cases the degree of protection was concentration dependent. At pH 7.5 combinations of MgCl2, FDP, and AMP were most effective. In the presence of these compounds initial inactivation of the muscle and liver enzymes did not occur until respective temperatures of 74 and 78 °C (15 min) were reached; these compare with initial inactivation temperatures in the absence of these compounds of 55 and 59 °C. The interaction of MgCl2 and FDP with the two enzymes at varying pH levels showed markedly different patterns. At pH7.5 and 8.8 increasing levels of MgCl2 provided increasing levels of protection whereas at pH 6.2 increasing MgCl2 concentrations resulted in an enhanced degree of inactivation. In the presence of FDP an opposite pattern was observed at the various pH levels. The presence of phosphate in the buffer tended to yield results similar to those of FDP.

2005 ◽  
Vol 60 (5) ◽  
pp. 505-510 ◽  
Author(s):  
Tong-Lai Zhang ◽  
Jiang-Chuang Song ◽  
Jian-Guo Zhang ◽  
Gui-Xia Ma ◽  
Kai-Bei Yu

Cobalt(II) and zinc(II) complexes of ethyl carbazate (ECZ), [Co(ECZ)3](NO3)2 and [Zn(ECZ)3] (NO3)2, were synthesized. Single crystals of these two compounds were grown from aqueous solutions using a slow evaporation method. Their structures have been determined by X-ray diffraction analysis. Both of them are monoclinic with space group P21/n. The complexes are further characterized by element analysis and IR measurements. Their thermal stabilities are studied by using TG-DTG, DSC techniques. When heated to 350 °C, only metal oxide was left for both complexes.


1998 ◽  
Vol 543 ◽  
Author(s):  
T. Çağin ◽  
Y. Zhou ◽  
E. S. Yamaguchi ◽  
R. Frazier ◽  
A. Ho ◽  
...  

AbstractTo understand antiwear phenomena in motor engines at the atomic level and provide evidence inselecting future ashless wear inhibitors, we studied the thermal stability of the self-assembled monolayer(SAM) model for dithiophosphate (DTP) and dithiocarbamate (DTC) molecules on the iron oxidesurface using molecular dynamics. The interactions for DTP, DTC and Fe2O3 are evaluated based on aforce field derived from fitting to ab initio quantum chemical calculations of dimethyl DTP (and DTC)and Fe(OH)2(H2O)2-DTP (DTC) clusters. MD simulations at constant-NPT are conducted to assesrelative thermal stabilities of the DTP and DTC with different pendant groups (n-propyl, i-propyl, npentyl.and i-pentyl). To investigate frictional process, we employ a steady state MD method, in whichone of the Fe2O3 slabs maintained at a constant linear velocity. We obtain the time averaged normaland frictional forces from the interatomic forces. Then, we calculated the friction coefficient at theinterface between SAMs of DTP and the confined lubricant, hexadecane, to assess the shear stability ofDTPs with different pendant groups.


1995 ◽  
Vol 405 ◽  
Author(s):  
F. Hyuga ◽  
T. Nittono ◽  
K. Watanabe ◽  
T. Furuta

AbstractThermal stabilities of GaAs/InGaP and InGaP/(In)GaAs interfaces are investigated using InGaP/(In)GaAs/InGaP single quantum wells. Annealing is performed at a temperature range between 600 and 900 °C for 10 min. Positions and the full widths at half maximum (FWHM) of photoluminescence (PL) peaks are almost identical to those of as-grown ones up to 800 °C. Blue shifts of PL peaks and increased widths of their FWHM observed after 900 °C annealing are suppressed by shortening the annealing time to 0.1 sec. Annealing at 900 ‘C for 0.1 sec is sufficient to activate Si ions implanted into (In)GaAs layers. As a result, these thermal stabilities are able to provide high reliability and high performance of InGaP/(In)GaAs heterostructure MESFET ICs.


1969 ◽  
Vol 15 (9) ◽  
pp. 1116-1118 ◽  
Author(s):  
C. H. Nash ◽  
D. W. Grant

Ribosomes from the obligately psychrophilic yeast, Candida gelida, are rendered completely non-functional after exposure to 40 C for 5 minutes. This heat-induced impairment of ribosomal function is characterized by a reduced capacity to bind charged sRNA and is accompanied by physical degradation. Ribosomes from the mesophilic yeast, Candida utilis, however, are functionally and physically unaffected when subjected to similar treatment. The dissimilar thermal stabilities may be attributed to marked differences in the ribonucleoproteins present in the two species.


2019 ◽  
Vol 42 ◽  
pp. e44498
Author(s):  
Fernanda Martins de Souza ◽  
Cleide Mara Faria Soares ◽  
Alvaro Silva Lima ◽  
Luciana Cristina Lins de Aquino Santana

In this work, a “green” Aspergillus niger lipase obtained from the solid-state fermentation of Hancornia speciosa (“mangaba”) seeds was efficiently immobilised on polyethersulfone membranes (PES) by physical adsorption (PES-ADS-lipase) and covalent bonding (PES-COV-lipase) (immobilisation yields of 92 and 81%, respectively). The free lipase showed an optimum pH close to neutrality, while the biocatalysts displaced the pH to the alkaline region (optimum pH 9.0 and 11.0 for PES-ADS-lipase and PES-COV-lipase, respectively). The optimum temperature of free lipase was 55°C; however, a higher thermal stability occurred at 37°C. The PES-ADS-lipase and PES-COV-lipase showed lower optimum temperatures (37 and 45°C, respectively) but higher thermal stabilities at 45 and 55°C, respectively. The lower thermal inactivation constant and higher half-life of PES-COV-lipase at 55°C confirmed the efficiency of covalent bonding in maintaining the thermal stability of the enzyme. The Michaelis–Menten constant (Km) and maximum rate of reaction (Vmax) were also determined, and the biocatalysts showed higher affinities to substrates (lower Km values) than free lipase. In this work, the biocatalysts showed good catalytic properties with future potential applications in hydrolysis reactions. The use of a “green” lipase obtained from agroindustrial residue makes this product economically attractive from an industrial point of view.


Author(s):  
Eman Ibrahim ◽  
Ahmed Mahmoud ◽  
Kim D Jones ◽  
Keith E Taylor ◽  
Ebtesam N Hosseney ◽  
...  

Abstract Lignocellulosic biomass conversion using cellulases/polygalacturonases is a process that can be progressively influenced by several determinants involved in cellulose microfibril degradation. This article focuses on the kinetics and thermodynamics of thermal inactivation of recombinant Escherichia coli cellulases, cel12B, cel8C and a polygalacturonase, peh 28, derived from Pectobacterium carotovorum sub sp. carotovorum. Several consensus motifs conferring the enzymes’ thermal stability in both cel12B and peh28 model structures have been detailed earlier, which were confirmed for the three enzymes through the current study of their thermal inactivation profiles over the 20–80°C range using the respective activities on carboxymethylcellulose and polygalacturonic acid. Kinetic constants and half-lives of thermal inactivation, inactivation energy, plus inactivation entropies, enthalpies and Gibbs free energies, revealed high stability, less conformational change and protein unfolding for cel12B and peh28 due to thermal denaturation compared to cel8C. The apparent thermal stability of peh28 and cel12B, along with their hydrolytic efficiency on a lignocellulosic biomass conversion as reported previously, makes these enzymes candidates for various industrial applications. Analysis of the Gibbs free energy values suggests that the thermal stabilities of cel12B and peh28 are entropy-controlled over the tested temperature range.


2008 ◽  
Vol 23 (8) ◽  
pp. 2264-2274 ◽  
Author(s):  
J.J. Liang ◽  
H. Wei ◽  
G.C. Hou ◽  
Q. Zheng ◽  
X.F. Sun ◽  
...  

The temperature dependence of the thermal stability in a NiCoCrAlY coating alloy was examined by experimental observation and thermodynamic modeling in the 400–1200 °C temperature range. The results indicated that the thermal stabilities of primary β–NiAl, β–NiAl/α–Cr eutectic, and γ–Ni were slightly temperature dependent, but those of γ′–Ni3Al, σ–(Cr,Co,Ni), and α–Cr were strongly temperature dependent in the annealed NiCoCrAlY specimens. The temperature dependence of the thermal stabilities among γ′–Ni3Al, σ–(Cr,Co,Ni), and α–Cr might be ascribed to the σ → α transformation at ∼1100 °C and the γ′ → γ transformation at ∼800 °C. Further, using Thermocalc associated with TTNi7 database, thermodynamic equilibria were calculated. The modeling results were compared with the experimental results and found to be in reasonable agreement with the experimental observations of β–NiAl, σ–(Cr,Co,Ni), and γ′–Ni3Al. Some deviations observed are discussed in the light of both limited availability of thermodynamic data and experimental problems.


2012 ◽  
Vol 722 ◽  
pp. 77-86
Author(s):  
Zhuo Li ◽  
Stewart J. Wilkins ◽  
Kyoung Sik Moon ◽  
C.P. Wong

The effects of carbon nanotubes (CNTs) on the thermal stability of CNT/polymer nanocomposites are discussed using CNT/silicone composites as a model compound. Pristine CNTs can improve the thermal stability of polymer composites due to the high thermal stability of CNTs, their network structure and free radical scavenging capabilities. However, impurities such as metal catalyst residues and defects such as carboxylic acid functional groups in CNTs can lead to decreased thermal stability of CNT/silicone nanocomposites. Acid purification is an efficient way to remove metallic impurities and can enhance free radical scavenging capabilities. However, controlling the amount of oxidation is important to avoid acid catalyzed thermal degradation induced by carboxylic acid groups on CNT surfaces.


2013 ◽  
Vol 833 ◽  
pp. 317-321 ◽  
Author(s):  
Feng Zhan ◽  
Nan Chun Chen ◽  
Xiao Hu Zhang ◽  
Bin Huang ◽  
Zhi Neng Wu ◽  
...  

Mechanical properties, abrasion properties, thermal stabilities, and dynamic mechanical properties of poly (vinyl chloride) (PVC)/diatomite composites with different diatomite content prepared by melting blending were investigated. The results indicated that mechanical properties of composites have different performance due to diatomite participation, and the flexural modulus was improved. With an increase in diatomite, the abrasion resistance and thermal stability of composites were improved. Furthermore, the E' and Tg of composites could be enhanced effectively with diatomite participation. The optimum combined properties of PVC/diatomite composite were obtained with the adding of 40 phr diatomite.


Sign in / Sign up

Export Citation Format

Share Document