The primary structure of the ribosomal A-protein (L12) from the moderate halophile NRCC 41227

1986 ◽  
Vol 64 (7) ◽  
pp. 675-680 ◽  
Author(s):  
Paul Falkenberg ◽  
Makoto Yaguchi ◽  
Camille Roy ◽  
Michael Zuker ◽  
Alastair T. Matheson

The complete amino acid sequence of the ribosomal A-protein (equivalent to L7/L12 in Escherichia coli) from a moderate halophile, NRCC 41227, has been determined using an automatic Beckman sequencer and by the manual Edman cleavage of peptides obtained from selective proteolytic cleavage of the ribosomal A-protein. The protein contains 122 amino acids and has a composition of Asp5, Asn2, Thr6, Ser6, Glu21, Gln2, Pro2, Gly12, Ala21, Val14, Met4, Ile4, Leu9, Phe2, Lys11, and Arg1, and a molecular weight of 12 537. It has a net negative charge of −14 and is, therefore, slightly more acidic than other eubacterial ribosomal A-proteins, The phylogenetic tree, obtained by computer analysis of the amino acid sequence of this and other eubacterial A-proteins, indicate these proteins form five subgroups within the eubacterial kingdom. The moderate halophile NRCC 41227 is part of a group of Gram-negative bacteria that include E. coli and another moderate halophile Vibrio costicola. The sequence data provides further evidence that the moderate and extreme halophiles have evolved by separate pathways.

mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Wenjuan Yin ◽  
Hui Li ◽  
Yingbo Shen ◽  
Zhihai Liu ◽  
Shaolin Wang ◽  
...  

ABSTRACT The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3. The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia coli. mcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3. IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3. The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors. IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3. The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xudong Tian ◽  
Guillaume Manat ◽  
Elise Gasiorowski ◽  
Rodolphe Auger ◽  
Samia Hicham ◽  
...  

The cell surface of Gram-negative bacteria usually exhibits a net negative charge mostly conferred by lipopolysaccharides (LPS). This property sensitizes bacterial cells to cationic antimicrobial peptides, such as polymyxin B, by favoring their binding to the cell surface. Gram-negative bacteria can modify their surface to counteract these compounds such as the decoration of their LPS by positively charged groups. For example, in Escherichia coli and Salmonella, EptA and ArnT add amine-containing groups to the lipid A moiety. In contrast, LpxT enhances the net negative charge by catalyzing the synthesis of tri-phosphorylated lipid A, whose function is yet unknown. Here, we report that E. coli has the intrinsic ability to resist polymyxin B upon the simultaneous activation of the two component regulatory systems PhoPQ and PmrAB by intricate environmental cues. Among many LPS modifications, only EptA- and ArnT-dependent decorations were required for polymyxin B resistance. Conversely, the acquisition of polymyxin B resistance compromised the innate resistance of E. coli to deoxycholate, a major component of bile. The inhibition of LpxT by PmrR, under PmrAB-inducing conditions, specifically accounted for the acquired susceptibility to deoxycholate. We also report that the kinetics of intestinal colonization by the E. coli lpxT mutant was impaired as compared to wild-type in a mouse model of infection and that lpxT was upregulated at the temperature of the host. Together, these findings highlight an important function of LpxT and suggest that a tight equilibrium between EptA- and LpxT-dependent decorations, which occur at the same position of lipid A, is critical for the life style of E. coli.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


2016 ◽  
Vol 60 (10) ◽  
pp. 5995-6002 ◽  
Author(s):  
Kristin R. Baker ◽  
Bimal Jana ◽  
Henrik Franzyk ◽  
Luca Guardabassi

ABSTRACTThe envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measureEscherichia colienvelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds andE. coligene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinctE. colistrains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R> 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.


1992 ◽  
Vol 282 (3) ◽  
pp. 747-752 ◽  
Author(s):  
O A M al-Bar ◽  
C D O'Connor ◽  
I G Giles ◽  
M Akhtar

A 1.2 kb BamHI fragment from pDK30 [Robinson, Kenan, Sweeney & Donachie (1986) J. Bacteriol. 167, 809-817] was cloned in pDOC55 [O'Connor & Timmis (1987) J. Bacteriol. 169, 4457-4482] to give two constructs, pDOC89 and pDOC87, in which the Escherichia coli D-alanine:D-alanine ligase (EC 6.3.2.4) gene (ddl) was placed under the control of the lac and lambda PL promoters respectively. Both constructs, when used to transform E. coli M72, gave similar levels of expression of the ddl gene. The expressed enzyme was purified to homogeneity and the amino acid sequence of its N-terminal region was found to be consistent with that predicted from the gene sequence, except that the N-terminal methionine was not present in the mature protein. [1(S)-Aminoethyl][(2RS)2-carboxy-1-octyl]phosphinic acid (I), previously shown to bind tightly to Enterococcus faecalis and Salmonella typhimurium D-alanine:D-alanine ligases following phosphorylation Parsons, Patchett, Bull, Schoen, Taub, Davidson, Combs, Springer, Gadebusch, Weissberger, Valiant, Mellin & Busch (1988) J. Med. Chem. 31, 1772-1778; Duncan & Walsh (1988) Biochemistry 27, 3709-3714], was found to be a classical slow-binding inhibitor of the E. coli ligase.


1971 ◽  
Vol 123 (4) ◽  
pp. 501-505 ◽  
Author(s):  
J. W. Dale

1. The amino acid composition of the β-lactamase from E. coli (R-1818) was determined. 2. The R-1818 β-lactamase is inhibited by formaldehyde, hydroxylamine, sodium azide, iodoacetamide, iodine and sodium chloride. 3. The Km values for benzylpenicillin, ampicillin and oxacillin have been determined by using the R-factor enzyme from different host species. The same values were obtained, irrespective of the host bacterium. 4. The molecular weight of the enzyme was found to be 44600, and was the same for all host species. 5. The relationship of R-1818 and R-GN238 β-lactamases is discussed.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


2020 ◽  
Vol 61 (6) ◽  
pp. 870-883 ◽  
Author(s):  
Inga Nilsson ◽  
Sheng Y. Lee ◽  
William S. Sawyer ◽  
Christopher M. Baxter Rath ◽  
Guillaume Lapointe ◽  
...  

Gram-negative bacteria possess an asymmetric outer membrane (OM) composed primarily of lipopolysaccharides (LPSs) on the outer leaflet and phospholipids (PLs) on the inner leaflet. The loss of this asymmetry due to mutations in the LPS biosynthesis or transport pathways causes the externalization of PLs to the outer leaflet of the OM and leads to OM permeability defects. Here, we used metabolic labeling to detect a compromised OM in intact bacteria. Phosphatidylcholine synthase expression in Escherichia coli allowed for the incorporation of exogenous propargylcholine into phosphatidyl(propargyl)choline and exogenous 1-azidoethyl-choline (AECho) into phosphatidyl(azidoethyl)choline (AEPC), as confirmed by LC/MS analyses. A fluorescent copper-free click reagent poorly labeled AEPC in intact wild-type cells but readily labeled AEPC from lysed cells. Fluorescence microscopy and flow cytometry analyses confirmed the absence of significant AEPC labeling from intact wild-type E. coli strains and revealed significant AEPC labeling in an E. coli LPS transport mutant (lptD4213) and an LPS biosynthesis mutant (E. coli lpxC101). Our results suggest that metabolic PL labeling with AECho is a promising tool for detecting a compromised bacterial OM, revealing aberrant PL externalization, and identifying or characterizing novel cell-active inhibitors of LPS biosynthesis or transport.­


2020 ◽  
Vol 6 (23) ◽  
pp. eaaz6333 ◽  
Author(s):  
Mikhail Bogdanov ◽  
Kyrylo Pyrshev ◽  
Semen Yesylevskyy ◽  
Sergey Ryabichko ◽  
Vitalii Boiko ◽  
...  

The distribution of phospholipids across the inner membrane (IM) of Gram-negative bacteria is unknown. We demonstrate that the IMs of Escherichia coli and Yersinia pseudotuberculosis are asymmetric, with a 75%/25% (cytoplasmic/periplasmic leaflet) distribution of phosphatidylethanolamine (PE) in rod-shaped cells and an opposite distribution in E. coli filamentous cells. In initially filamentous PE-lacking E. coli cells, nascent PE appears first in the periplasmic leaflet. As the total PE content increases from nearly zero to 75%, cells progressively adopt a rod shape and PE appears in the cytoplasmic leaflet of the IM. The redistribution of PE influences the distribution of the other lipids between the leaflets. This correlates with the tendency of PE and cardiolipin to regulate antagonistically lipid order of the bilayer. The results suggest that PE asymmetry is metabolically controlled to balance temporally the net rates of synthesis and translocation, satisfy envelope growth capacity, and adjust bilayer chemical and physical properties.


Sign in / Sign up

Export Citation Format

Share Document