DNA methylation pattern during the encystment of Physarum flavicomum

1990 ◽  
Vol 68 (6) ◽  
pp. 944-948 ◽  
Author(s):  
Chengming Zhu ◽  
Henry R. Henney Jr.

In Physarum flavicomum Berk., haploid myxamoebae convert to dormant microcysts under conditions of nutrient imbalance. Exogenous adenine increases the intracellular content of S-adenosylmethionine (SAM) and inhibits this process. However, treatments that reduce the intracellular SAM levels relieve the inhibition of encystment induced by adenine. SAM plays a major metabolic role in cellular transmethylation reactions. In this study, we compared the DNA methylation patterns of growing cells, encysting cells, adenine-inhibited cells, and cysts using three different approaches: incubation of the cells with [14C]methylmethionine and detection of the labeled methyl group in purified DNA samples; analyses of DNA base composition by high performance liquid chromatography; and restriction endonuclease analyses of DNA. We found that DNA from the adenine-treated cells was labelled 1.3 times more with [14C]methylmethionine than was the DNA of untreated encysting cells. The DNA G + C content of this species was about 41%. The DNA of growing cells had the highest 5-methylcytosine (5MC) content, while DNA from the cysts had the lowest (about 27% that of growing cells). Adenine-inhibited cells had about 1.2 times more DNA-5MC than did encysting cells. Using the restriction enzymes SmaI, PvuI, and XhoI (which are inhibited by C residue methylation), we found that cyst DNA had more cutting sites than did amoebal DNA. By using the restriction enzyme DpnI which cuts DNA at GmATC sites, we found that cyst DNA, but not growing cell DNA, contained N6-methyladenine.Key words: amoebae, cysts, methylation, 5-methylcytosine, N6-methyladenine, DNA, encystment, Physarum flavicomum, development, inhibition.

2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


2018 ◽  
Vol 4 (11) ◽  
pp. eaau6986 ◽  
Author(s):  
Lu Wang ◽  
Patrick A. Ozark ◽  
Edwin R. Smith ◽  
Zibo Zhao ◽  
Stacy A. Marshall ◽  
...  

The tet methylcytosine dioxygenase 2 (TET2) enzyme catalyzes the conversion of the modified DNA base 5-methylcytosine to 5-hydroxymethylcytosine. TET2 is frequently mutated or dysregulated in multiple human cancers, and loss of TET2 is associated with changes in DNA methylation patterns. Here, using newly developed TET2-specific antibodies and the estrogen response as a model system for studying the regulation of gene expression, we demonstrate that endogenous TET2 occupies active enhancers and facilitates the proper recruitment of estrogen receptor α (ERα). Knockout of TET2 by CRISPR-CAS9 leads to a global increase of DNA methylation at enhancers, resulting in attenuation of the estrogen response. We further identified a positive feedback loop between TET2 and ERα, which further requires MLL3 COMPASS at these enhancers. Together, this study reveals an epigenetic axis coordinating a transcriptional program through enhancer activation via DNA demethylation.


2020 ◽  
Vol 21 (4) ◽  
pp. 1547 ◽  
Author(s):  
Elisa Boldrin ◽  
Matteo Curtarello ◽  
Marco Dallan ◽  
Rita Alfieri ◽  
Stefano Realdon ◽  
...  

DNA methylation plays an important role in cancer development. Cancer cells exhibit two types of DNA methylation alteration: site-specific hypermethylation at promoter of oncosuppressor genes and global DNA hypomethylation. This study evaluated the methylation patterns of long interspersed nuclear element (LINE-1) sequences which, due to their relative abundance in the genome, are considered a good surrogate indicator of global DNA methylation. LINE-1 methylation status was investigated in the cell-free DNA (cfDNA) of 21 patients, 19 with esophageal adenocarcinoma (EADC) and 2 with Barrett’s esophagus (BE). The two BE patients and one EADC patient were also analyzed longitudinally. Methylation status was analyzed using restriction enzymes and DNA amplification. This methodology was chosen to avoid bisulfite conversion, which we considered inadequate for cfDNA analysis. Indeed, cfDNA is characterized by poor quality and low concentration, and bisulfite conversion might worsen these conditions. Results showed that hypomethylated LINE-1 sequences are present in EADC cfDNA. Furthermore, longitudinal studies in BE suggested a correlation between methylation status of LINE-1 sequences in cfDNA and progression to EADC. In conclusion, our study indicated the feasibility of our methodological approach to detect hypomethylation events in cfDNA from EADC patients, and suggests LINE-1 methylation analysis as a new possible molecular assay to integrate into patient monitoring.


1996 ◽  
Vol 45 (1-2) ◽  
pp. 243-244
Author(s):  
P.A. Koetsier ◽  
W. Doerfler

In previous work from this laboratory, an inverse dependence was established for the adenovirus type 2 E2A late promoter between sequence-specific DNA methylation and promoter activity [1-5; for reviews see ref. 6, 7]. The effect of DNA methylation on promoter activity was also assessed in the transgenic mice, which were obtained from microinjections of unmethylated or in vitro HpaII-premethylated pAd2E2AL-CAT DNA [1] into F2 zygotes from B6D2F, (C57BL/6 × DBA/2) hybrid mice. In CAT assays carried out on organ extracts from the pAd2E2AL-CAT mice, the inverse relationship was confirmed [2].We studied the stability of the pAd2E2AL-CAT DNA methylation patterns in up to eight mouse generations and assessed the influence of the strain-specific genetic background. Three pAd2E2AL-CAT mouse lines were crossed with inbred DBA/2, C57BL/6 or B6D2F, mice. Parent-of-origin effects were controlled by exclusive hemizygous transgene transmission either via females or males. The founder animal of line 7-1 carried two groups of transgenes (A and B) on separate chromosomes. The transgene methylation patterns of the 7-1B transgenes and those of the lines 5-8 and 8-1 were stably transmitted.Southern blot hybridization experiments [8, 9] revealed that the 7-1A transgene methylation pattern was a cellular mosaic. In mixed-genetic-background offspring from 7-1A animals, 10% carried transgenes with HpaII-DNA methylation levels that were reduced from 40 to 10-15%. This finding suggested that in this background the factors that supported high methylation levels were dominant. When inbred DBA/2 mice were the mates, 40% of the siblings carried demethylated transgenes, whereas this ratio amounted to only 10% in C57BL/6 offspring (comparable to B6D2F1 crossings). Transgene methylation patterns were not detectably influenced by the parent-of-origin.


2020 ◽  
Author(s):  
Takeru Kameda ◽  
Miho M. Suzuki ◽  
Akinori Awazu ◽  
Yuichi Togashi

AbstractDNA methylation is associated with a number of biological phenomena, and plays crucial roles in epigenetic regulation of eukaryotic gene expression. It is also suggested that DNA methylation alters the mechanical properties of DNA molecules, which is likely to affect epigenetic regulation. However, it has not been systematically investigated how methylation changes the structural and dynamic features of DNA. In this research, to elucidate the effects of methylation on DNA mechanics, a fully atomic molecular dynamics simulation of double-stranded DNA with several methylation patterns was performed. Through the analysis of the relative positioning of the nucleotides (base-step variables), characteristic changes in terms of local flexibility were observed, which further affected the overall DNA geometry and stiffness. These findings may serve as a basis for a discussion on methylation-dependent DNA dynamics in physiological conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yupeng Zhang ◽  
Hongyu Long ◽  
Sai Wang ◽  
Wenbiao Xiao ◽  
Meishan Xiong ◽  
...  

Primary intracerebral hemorrhage (ICH) is a significant cause of morbidity and mortality throughout the world. ICH is a multifactorial disease that emerges from interactions among multiple genetic and environmental factors. DNA methylation plays an important role in the etiology of complex traits and diseases. We used the Illumina Infinium Human Methylation 850k BeadChip to detect changes in DNA methylation in peripheral blood samples from patients with ICH and healthy controls to explore DNA methylation patterns in ICH. Here, we compared genomic DNA methylation patterns in whole blood from ICH patients (n = 30) and controls (n = 34). The ICH and control groups showed significantly different DNA methylation patterns at 1530 sites (p-value < 5.92E-08), with 1377 hypermethylated sites and 153 hypomethylated sites in ICH patients compared to the methylation status in healthy controls. A total of 371 hypermethylated sites and 35 hypomethylated sites were in promoters, while 738 hypermethylated sites and 67 hypomethylated sites were in coding regions. Furthermore, the differentially methylated genes between ICH patients and controls were largely related to inflammatory pathways. Abnormalities in the DNA methylation pattern identified in the peripheral blood of ICH patients may play an important role in the development of ICH and warranted further investigation.


2019 ◽  
Vol 47 (4) ◽  
pp. 997-1003 ◽  
Author(s):  
Huiming Zhang ◽  
Kang Zhang ◽  
Jian-Kang Zhu

Abstract DNA methylation at the fifth position of cytosine is a major epigenetic mark conserved in plants and mammals. Genome-wide DNA methylation patterns are dynamically controlled by integrated activities of establishment, maintenance, and removal. In both plants and mammals, a pattern of global DNA hypomethylation coupled with increased methylation levels at some specific genomic regions arises at specific developmental stages and in certain abnormal cells, such as mammalian aging cells and cancer cells as well as some plant epigenetic mutants. Here we provide an overview of this distinct DNA methylation pattern in mammals and plants, and propose that a methylstat, which is a cis-element responsive to both DNA methylation and active demethylation activities and controlling the transcriptional activity of a key DNA methylation regulator, can help to explain the enigmatic DNA methylation patterns in aging cells and cancer cells.


2021 ◽  
Vol 22 (7) ◽  
pp. 3754
Author(s):  
Silvia Pierandrei ◽  
Gessica Truglio ◽  
Fabrizio Ceci ◽  
Paola Del Porto ◽  
Sabina Maria Bruno ◽  
...  

The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype–phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of CFTR and ENaC subunits α, β and γ (respectively SCNN1A, SCNN1B, and SCNN1G genes) was studied by real time PCR. DNA methylation of 5′-flanking region of SCNN1A, SCNN1B, and SCNN1G genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The SCNN1A gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, SCNN1B and SCNN1G genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF.


Sign in / Sign up

Export Citation Format

Share Document