Essential fatty acids and serine as plasmalogen precursors in relation to competing metabolic pathways

1991 ◽  
Vol 69 (7) ◽  
pp. 475-484 ◽  
Author(s):  
Harold W. Cook ◽  
Susan E. Thomas ◽  
Zhaolin Xu

Interest in altered ether-lipid metabolism, associated with peroxisomal disorders including adrenoleukodystrophy and Zellweger's syndrome, has highlighted present limitations in our understanding of the biosynthesis and turnover of plasmalogens. These 1-alkenyl ethanolamine phosphoglycerides are major phospholipids in brain, vascular tissue, neutrophils, and most tumors, and they constitute 15–20% of total phospholipids in cultured glioma cells. In glioma, turnover of polyunsaturated acyl chains in the sn-2 position of plasmalogens was examined in relation to selectivity for the (n–3) and (n–6) families. Remodeling of acyl chains was more dependent on chain length than on selectivity between families, consistent with plasmalogens enriched in polyunsaturated, but not specifically (n–3), fatty acids. Extracellular serine was a precursor of serine and ethanolamine phosphoglycerides and was associated with plasmalogens due to decarboxylation and headgroup exchange. Incorporation of extracellular serine ceased within 8 h, even though more than 50% of the label remained in the medium. Analyses of medium and cellular water-soluble components indicated rapid conversion of serine to glycine and other metabolites not used in phospholipid biosynthesis. Thus, nutrient molecules as precursors of plasmalogens are involved in complex competitive interactions. As functions of plasmalogens are clarified, regulation of plasmalogen turnover becomes an increasingly important issue and elucidation of these processes is essential.Key words: plasmalogen, serine, fatty acids, glioma.

1991 ◽  
Vol 69 (7) ◽  
pp. 463-474 ◽  
Author(s):  
Hugo W. Moser ◽  
Ann Bergin ◽  
David Cornblath

The concept that there are human disease states that are associated with abnormal peroxisomal function is of recent origin. This is due in part to the relatively recent discovery of the organelle itself by de Duve in 1983, and to the earlier belief that it was a vestigial structure in mammals. The recognition that the organelle is significant in mammals was ushered in by Paul Lazarow's observation that rat peroxisomes catalyze the β-oxidation of fatty acids. By 1981, more than 40 enzymes had been localized to the peroxisome, and the number continues to grow. Respect for the physiological role of the peroxisome in man has been heightened by our recent recognition that peroxisome malfunction causes profound disturbances. The Zellweger cerebro-hepato-renal syndrome represents the most serious peroxisomal disease. It is associated with malfunction of virtually every organ, and children with the disease usually do not survive beyond the 4th month. Application of newly developed diagnostic techniques has shown that the clinical spectrum and frequency of peroxisomal disorders are greater than had been realized. Eleven separate peroxisomal disorders have now been identified. Our laboratory alone has identified more than 2000 patients. Disturbances of very long chain fatty acid and ether phospholipid metabolism are present in 9 of the 11 peroxisomal disorders. In this presentation, we will provide an overview of the peroxisomal disorders, with emphasis on disturbances of fatty acid and ether lipid metabolism.Key words: peroxisomes, very long chain fatty acids, Zellweger syndrome, erucic acid, Refsum disease.


2019 ◽  
pp. 145-151
Author(s):  
Ivan Nikolaevich Zubov ◽  
Svetlana Borisovna Selyanina ◽  
Natal'ia Alekseevna Kutakova ◽  
Natal'ia Vladimirovna Selivanova

A common juniper (Juniperus Communis L.)  is a representative of shrub layer of boreal forests. In this work seasonal dynamics of quantitative content of main group of juniper woody greenery extractive substances is considered. Sampling was carried out during the spring-summer-autumn period in the Arkhangelsk region outside the zone of anthropogenic impact. Forest type – blueberry, mixed spruce-pine forest stand, class of Bonita-IV. In study samples content of mineral, water-soluble, alcohol-soluble and removing by steam distillation compounds and lipids content have been determined. According to these data, content of alcohol-soluble components is from 27.1 to 33.3%. It has maximum in April which is the last month of subarctic plants resting phase. The start of growth season in May is followed by sharp decrease of alcohol-soluble components content till it is the least value. Part of the components of alcohol extracts is precipitated when cooled in the form of wax (esters of fatty acids and alcohols or sterols with an admixture of fatty acids, hydrocarbons, pigments). The maximum content (4.3%) of wax substances falls on April, the minimum (1.4%) was detected in May. Lipids content ranges from 8.6 to 12.2%. This is somewhat below in comparison with pine tree, fir and other coniferous species. The three minimums of lipids content (in May, August and December), which were extracted with petroleum ether, in juniper woody greenery are observed in annual dynamic, and one maximum (July). The content of essential oil varies slightly by season and the number (2.4–2.8%) is second only to the DZ of fir. In the group of water-soluble substances there are two highs (June and November) and a low of August. The first maximum is associated with the flow of aqueous solutions from the soil, the second corresponds to the period of phenol accumulation. The minimum is explained by the slowing down of the aspiration current through the water supply channels at the end of the summer. It has been established that seasonal dynamics of main group of extractive substances content of juniper woody greenery as a whole is correspond to phenological cycle.


2020 ◽  
Vol 2020 (3) ◽  
pp. 60-64

Creating dietary margarines using biologically valuable substances is the purpose of the work. According to the results of the experiments, it was found that the use of soybean oil, edible vegetable phospholipids and a Jerusalem artichoke extract in the margarine, allowed reducing the amount of fat and enriching the margarine with omega-3 and omega-6 fatty acids, dietary fibre, inulin and other water-soluble substances. Based on these studies prepared margarine enriched inulin and essential fatty acids, which provide not only a preventive property of the finished product, but also high flavor indicators, as well as, original and attractive appearance.


1990 ◽  
Vol 18 (5) ◽  
pp. 761-766 ◽  
Author(s):  
M. A. CRAWFORD ◽  
K. COSTELOE ◽  
W. DOYLE ◽  
M. J. LEIGHFIELD ◽  
E. A. LENNON ◽  
...  

Summary Low birth weight (LBW) is associated with handicaps, the most prevelant of which affect the brain or its sensory attributes and have a life long impact. We have therefore been interested in nutrition and fetal growth and have studied the relationship between maternal diet and the outcome of pregnancy. Essential fatty acids are methylene-interrupted, polyenoic fatty acids that are required for cell membrane structure, integrity and function. Some 60% of the structural material of the brain and nervous system is lipid and it uses 20- and 22-carbon-chain-length polyenoic acids specifically in sites of signal transduction and high activity (Fig. 1). We have been interested in the acquisition of these fatty acids during fetal growth and along with deficits of several nutrients found low intakes of essential fatty acids (EFA) in the mothers of LBW babies. In order to test this food intake data we have analysed the lipids of the umbilical artery as representative of fetal tissue. We found surprisingly high proportions of the n − 9 eicosatrienoic acid (20:3, n − 9) and docosatrienoic acid (22:3, n − 9). The 20:3, n − 9 is known as the Mead acid and is recognized as a biochemical index of EFA deficiency [1,2]. The 20:3, n − 9/2:4, n − 6 ratio has been used as a biochemical test of general EFA deficiency and the 22:5, n − 6/ 22:4, n − 6 ratio as a marker of docosahexaenoic or n − 3 deficiency. Both ratios were unusually high. Further analysis of 14 babies of different birth weights produced highly significant Pearson correlation coefficients between birth weights and head circumferences, and these two indices, which were negative, and greater in the ethanolamine phosphoglycerides than in the choline phosphoglycerides of the umbilical artery. The ethanolamine phosphoglycerides are inner membrane lipids and therefore the presence of the Mead acid and high levels of 22:5, n − 6 are statements about the biochemical history of the individual fetus. These indices may therefore have a diagnostic value as a measure of the nutritional status of the fetus during its growth. Because they describe the status of fatty acids specifically used for neural tissue growth, this diagnostic tool has a potential, which needs now to be tested, for assessing risk of neural deficits or damage in, for example, LBW and premature infants.


2020 ◽  
Vol 638 ◽  
pp. 107-121 ◽  
Author(s):  
BS Rangel ◽  
NE Hussey ◽  
Y Niella ◽  
LA Martinelli ◽  
AD Gomes ◽  
...  

Throughout evolutionary history, elasmobranchs have developed diverse reproductive strategies. Little focused work, however, has addressed how neonatal nutritional state is affected by differing degrees of maternal investment associated with these markedly different reproductive strategies. To investigate the effect of maternal investment on the nutritional quality of pups during the early life history of an extremely viviparous elasmobranch, quantitative biomarker analysis including lipids, fatty acids and stable isotopes was conducted. Using the cownose ray Rhinoptera bonasus (histotrophic viviparous) as a model, we found that pups were initially born in a positive nutritional state, enriched in physiologically important essential fatty acids and nitrogen and carbon stable isotope values (δ15N and δ13C), a result of maternal intrauterine transfer. A systematic decrease in some fatty acids and δ15N values, as well as a decrease in cholesterol with growth, confirmed that these substrates were derived from maternal resources and used in initial metabolic processes following birth. An observed increase in condition factor, plasma essential fatty acids and triglyceride:cholesterol ratio with increasing body size identified a progression towards successful independent foraging with pups not displaying marked nutritional deficiency or fasting phases. Our multi-tracer approach allowed the identification of 2 size classes of young rays (<50 and <70 cm disc width) that displayed distinct physiological states. Since prenatal maternal investment is critical for offspring condition and to promote successful foraging post birth, understanding the trophic ecology and physiological state of pups during their first year is critical to guide management and conservation within nursery grounds.


2020 ◽  
Author(s):  
KJ Nunan ◽  
Ian Sims ◽  
A Bacic ◽  
SP Robinson ◽  
GB Fincher

Cell walls have been isolated from the mesocarp of mature grape (Vitis vinifera L.) berries. Tissue homogenates were suspended in 80% (v/v) ethanol to minimise the loss of water-soluble wall components and wet-sieved on nylon mesh to remove cytoplasmic material. The cell wall fragments retained on the sieve were subsequently treated with buffered phenol at pH 7.0, to inactivate any wall-bound enzymes and to dislodge small amounts of cytoplasmic proteins that adhered to the walls. Finally, the wall preparation was washed with chloroform/methanol (1:1, v/v) to remove lipids and dried by solvent exchange. Scanning electron microscopy showed that the wall preparation was essentially free of vascular tissue and adventitious protein of cytoplasmic origin. Compositional analysis showed that the walls consisted of approximately 90% by weight of polysaccharide and less than 10% protein. The protein component of the walls was shown to be rich in arginine and hydroxyproline residues. Cellulose and polygalacturonans were the major constituents, and each accounted for 30-40% by weight of the polysaccharide component of the walls. Substantial varietal differences were observed in the relative abundance of these two polysaccharides. Xyloglucans constituted approximately 10% of the polysaccharide fraction and the remainder was made up of smaller amounts of mannans, heteroxylans, arabinans and galactans.


2018 ◽  
Vol 28 (4) ◽  
pp. 1219-1225
Author(s):  
Filip Jovanovski ◽  
Toni Mitrovski ◽  
Viktorija Bezhovska

Food is not just a pleasure in life, it is also an important factor for our health. Human nutrition is a mixture of nutrients, which are the only source of energy needed for survival. Energy-poor diet endangers many life functions, and above all the working ability. In the world, the meaning of the diet is very serious, and hence the demands for a –rational, healthy and safe diet are growing. Human nutrition contains saturated and unsaturated fatty acids. Essential fatty acids (EFAs) must be ingested in everyday diet because the body does not produce it. They are very important for human health. They are present in each cell of the human body and are an important factor for the normal growth, development and functioning of cells, muscles, nerves and organs. They are also used in the production of certain hormones - such as prostaglandins, which are crucial for the performance of certain important processes. The deficit from EFAs is due to a number of health problems, including more serious diseases.


Sign in / Sign up

Export Citation Format

Share Document