Investigation on dielectric properties of the polyetherketone nanocomposite with lead titanate ultrafines

2001 ◽  
Vol 79 (5) ◽  
pp. 847-855 ◽  
Author(s):  
W Shi ◽  
C Fang ◽  
S Guo ◽  
Q Ren ◽  
Q Pan ◽  
...  

The dielectric properties of polymer composites with inorganic nanoparticles were investigated. In the demonstration of the dielectric constant expression of the nanocomposite polymer, the dielectric contributions of the displacement polarization, the orientation polarization, and the space polarization in the nanocomposite polymer were all considered. In the demonstration, two dielectric relaxation models were used, that of Debye for inorganic nanoparticles and the Havriliak–Negami function model for polymers. Then the expression of the complex dielectric constant of the nanocomposite polymer was obtained by using Onsager's local field theory. Furthermore, the nanocomposite polymer thin films that consist of PbTiO3 nanoparticles and polyetherketone were prepared. The real parts of the dielectric constants were measured and calculated, respectively. It was found that our calculated results are in good agreement with our measured results. PACS Nos.: 77.20, 77.55, 81.20T

2013 ◽  
Vol 12 (06) ◽  
pp. 1350057 ◽  
Author(s):  
HSIU-YA TASI ◽  
CHAOYUAN ZHU

Dielectric constants and Seebeck coefficients for semiconductor materials are studied by thermodynamic method plus ab initio quantum density functional theory (DFT). A single molecule which is formed in semiconductor material is treated in gas phase with molecular boundary condition and then electronic polarizability is directly calculated through Mulliken and atomic polar tensor (APT) density charges in the presence of the external electric field. This electronic polarizability can be converted to dielectric constant for solid material through the Clausius–Mossotti formula. Seebeck coefficient is first simulated in gas phase by thermodynamic method and then its value divided by its dielectric constant is regarded as Seebeck coefficient for solid materials. Furthermore, unit cell of semiconductor material is calculated with periodic boundary condition and its solid structure properties such as lattice constant and band gap are obtained. In this way, proper DFT function and basis set are selected to simulate electronic polarizability directly and Seebeck coefficient through chemical potential. Three semiconductor materials Mg 2 Si , β- FeSi 2 and SiGe are extensively tested by DFT method with B3LYP, BLYP and M05 functionals, and dielectric constants simulated by the present method are in good agreement with experimental values. Seebeck coefficients simulated by the present method are in reasonable good agreement with experiments and temperature dependence of Seebeck coefficients basically follows experimental results as well. The present method works much better than the conventional energy band structure theory for Seebeck coefficients of three semiconductors mentioned above. Simulation with periodic boundary condition can be generalized directly to treat with doped semiconductor in near future.


2007 ◽  
Vol 124-126 ◽  
pp. 177-180
Author(s):  
Jang Sik Lee ◽  
Q.X. Jia

To investigate the anisotropic dielectric properties of layer-structured bismuth-based ferroelectrics along different crystal directions, we fabricate devices along different crystal orientations using highly c-axis oriented Bi3.25La0.75Ti3O12 (BLT) thin films on (001) LaAlO3 (LAO) substrates. Experimental results have shown that the dielectric properties of the BLT films are highly anisotropic along different crystal directions. The dielectric constants (1MHz at 300 K) are 358 and 160 along [100] and [110], respectively. Dielectric nonlinearity is also detected along these crystal directions. On the other hand, a much smaller dielectric constant and no detectable dielectric nonlinearity in a field range of 0-200 kV/cm are observed for films along [001] when c-axis oriented SRO is used as the bottom electrode.


1998 ◽  
Vol 541 ◽  
Author(s):  
Wontae Chang ◽  
James S. Horwitz ◽  
Won-Jeong Kim ◽  
Jeffrey M. Pond ◽  
Steven W. Kirchoefer ◽  
...  

AbstractSingle phase BaxSr1−xTiO3 (BST) films (∼0.5-7 μm thick) have been deposited onto single crystal substrates (MgO, LaAlO3, SrTiO3) by pulsed laser deposition. Silver interdigitated electrodes were deposited on top of the ferroelectric film. The room temperature capacitance and dielectric Q (1/tanδ) of the film have been measured as a function of electric field (≤80 kV/cm) at 1 - 20 GHz. The dielectric properties of the film are observed to strongly depend on substrate type and post-deposition processing. After annealing (≤1000° C), it was observed that the dielectric constant and % tuning decreased and the dielectric Q increased for films deposited onto MgO, and the opposite effect was observed for films deposited onto LaA1O3. Presumably, this change in dielectric properties is due to the changes in film stress. Very thin (∼50 Å) amorphous BST films were successfully used as a stress-relief layer for the subsequently deposited crystalline BST (∼5000 Å) films to maximize % tuning and dielectric Q. Films have been deposited from stoichiometric targets and targets that have excess Ba and Sr. The additional Ba and Sr has been added to the target to compensate for deficiencies in Ba and Sr observed in the deposited BST (x=0.5) films. Films deposited from compensated targets have higher dielectric constants than films deposited from stoichiometric targets. Donor/acceptor dopants have also been added to the BST target (Mn, W, Fe ≤4 mol.%) to further improve the dielectric properties. The relationship between the dielectric constant, the dielectric Q, the change in dielectric constant with electric field is discussed.


1997 ◽  
Vol 12 (2) ◽  
pp. 526-530 ◽  
Author(s):  
G. L. Roberts ◽  
R. J. Cava ◽  
W. F. Peck ◽  
J. J. Krajewski

The results of measurements of dielectric constants, in the vicinity of ambient temperature, are presented for eight barium titanium niobium oxides (BaTi1+2nNb4O13+4n for n = 0, 1, 2, 3, 4; Ba3Ti4Nb4O21, Ba3Ti5Nb6O28, and Ba6Ti2Nb8O30) in polycrystalline ceramic form. The dielectric constants are in the range of 30 to 70. The results of dielectric measurements on solid solutions obtained by partial substitution of Ta for Nb are also reported. These substitutions do not dramatically increase the dielectric constants. One material, Ta-substituted Ba3Ti5Nb6O28, has a very low temperature coefficient of dielectric constant at K ≈ 45.


1986 ◽  
Vol 72 ◽  
Author(s):  
G. V. Chandrashekhar ◽  
M. W. Shafer

AbstractDielectric properties have been measured for a series of porous and fully densified silica glasses, prepared by the sol-gel technique starting from Si-methoxide or Si-fume. The results for the partially densified glasses do not show any preferred orientation for porosity. When fully densified (˜2.25 gms/cc) without any prior treatment of the gels, they have dielectric constants of ≥ 6.5 and loss factors of 0.002 at 1 MHz, compared to values of 3.8 and <0.001 for commercial fused silica. There is no corresponding anomaly in the d.c. resistivity. Elemental carbon present to the extent of 400–500 ppm is likely to be the main cause for this enhanced dielectric constant. Extensive cleaning of the gels prior to densification to remove this carbon were not completely successful pointing to the difficulty in preparing high purity, low dielectric constant glasses via the organic sol-gel route at least in the bulk form.


1961 ◽  
Vol 39 (3) ◽  
pp. 526-534 ◽  
Author(s):  
B. D. Ripley ◽  
R. McIntosh

The complex dielectric constants of three compositions of trimethylpentane and nitrobenzene have been measured as a function of temperature for a range near the consolute temperature. The frequency employed was 3300 Mc/sec. The experimental procedure involved the study of the standing wave established in a coaxial line. The chemical systems showed maxima in both the real and imaginary parts of the complex dielectric constant at temperatures above those at which phase separation occurs. The finding of Semenchenko and Azimov is thus confirmed. A discussion of the validity of applying thermodynamic formulae to dielectrics showing loss is given and some qualitative remarks are offered concerning the change of the systems as they are cooled. These remarks are based upon the effect of the applied field upon the entropy of the solutions.


Geophysics ◽  
1981 ◽  
Vol 46 (3) ◽  
pp. 322-332 ◽  
Author(s):  
James N. Lange ◽  
Steven S. Shope

The application of electromagnetic (EM) techniques to well logging is initiated in an environment dominated by the properties of the drilling fluids. An impulse technique using nanosecond pulses is applied to a coaxial waveguide containing drilling fluids to measure the velocity (dielectric constant ε) and absorption (attenuation coefficient α) of EM impulses. It is the large difference in dielectric constants of water and oil which makes EM propagation techniques attractive for logging. Dielectric properties of some nondispersed drilling fluids (bentonite and attapulgite clays) are found to be largely dependent upon the volume of water present. Both bentonite and attapulgite clays exhibit the same range of dielectric constants (ε = 81 → 75) when the weight percent of clay is increased to 10 percent. In contrast, the microwave attenuations of these two clays are quite different, with that of the bentonite increasing at about 4 times the rate of the attapulgite suspensions. Microwave attenuation measured for a variety of commercial drilling fluids varies over a wide range, with the lignosulfonates the largest (91 dB/m) and oil inverts the smallest (3 dB/m). The oil inverts also have a small dielectric constant (ε = 3 → 6). Temperature dependence of the attenuation for these same drilling fluids is determined in the range from 23 °C to 45 °C to indicate their behavior under in situ conditions.


2009 ◽  
Vol 421-422 ◽  
pp. 69-72
Author(s):  
Jie Shen ◽  
Wen Chen ◽  
Jing Zhou ◽  
Jie Zhu ◽  
Qiong Lei

The relationship between the character of the B-site cation–oxygen bond and the microwave dielectric properties in perovskites dielectric materials was studied in this paper. The atomic net charge of CaTiO3 (CT) and Ca(Zn1/3Nb2/3)O3 (CZN) was calculated respectively. The calculating result implies that the covalency of B-O bonds in CZN is stronger than that in CT. This predicted that the dielectric constant and loss of the ceramics will decrease after CZN incorporated in CT. To confirme the prediction, (1-x)CT-xCZN microwave dielectric ceramics were prepared by solid state reaction method with ZnNb2O6 as precursor. The structure analysis in terms of tolerance factor gives an identical result as calculation. The microwave dielectric properties, such as dielectric constants, Q×f values and τf were studied as a function of composition. With x increasing from 0.2 to 0.8, the dielectric constant linearly decreases from 109 to 49.37, the Q×f value increases from 8,340 to 13,200 GHz, and τf decreases from 321 to -18 ppm/°C. The properties trends are consistent with the previous calculation results, and confirm the relationship between the character of B-O bond and dielectric properties.


1991 ◽  
Vol 227 ◽  
Author(s):  
D. Boese ◽  
S. Herminghaus ◽  
D. Y. Yoon ◽  
J. D. Swalen ◽  
J. F. Rabolt

ABSTRACTThin films of poly(p-phenylene biphenyltetracarboximide), prepared by thermal imidization of the precursor poly(amic acid) on substrates, have been investigated by optical waveguide, UV-visible, infrared (IR), and dielectric spectroscopies. The polyimide films exhibit an extraordinarily large anisotropy in the refractive indices with the in-plane index n║ = 1.852 and the out-of-plane index n┴ = 1.612 at 632.8 nm wavelength, indicating a strong preference of polymer chains to orient along the film plane. No discernible effect of the film thickness on this optical anisotropy is found in the range of ca. 0.4 μm to 7.8 μm in thickness. The frequency dispersion of the in-plane refractive index to 1.06 μm wavelength is consistent with the results calculated by the Lorentz-Lorenz equation from the UV-visible spectrum. The contribution from the entire IR range from 7000 to 200 cm,−1 computed by the Spitzer-Kleinmann dispersion relations from the measured spectra, adds ca. 0.07 to the in-plane refractive index n║. Approximately the same increase is assumed for the out-of-plane index n┴, based on the tilt-angle dependent IR results. Application of the Maxwell relation leads to the out-of-plane dielectric constant ε┴≃2.8 at ca. 1013 Hz, as compared with the measured value of ca. 3.0 at 106 Hz. Assuming this small difference to remain the same for the in-plane dielectric constants ε║, we obtain a a very large anisotropy in the dielectric properties of these polyimide films with the estimated in-plane dielectric constant ε║≃3.5 at ca. 1013 Hz, and ε.≃3.7 at 106 Hz.


2012 ◽  
Vol 496 ◽  
pp. 263-267
Author(s):  
Rui Li ◽  
Jian Zhong Pei ◽  
Yan Wei Li ◽  
Xin Shi ◽  
Qun Le Du

A novel all-polymeric material with high dielectric constant (k) has been developed by blending poly (vinylidene fluoride) (PVDF) with polyamide-6 (PA6). The dependence of the dielectric properties on frequency and polymer volume fraction was investigated. When the volume fraction of PA6 is 20%, the dielectric property is better than others. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. The XRD demonstrate that the PA6 and PVDF affect the crystalline behavior of each component. Furthermore, the stable dielectric constants of the blends could be tuned by adjusting the content of the polymers. The created high-k all-polymeric blends represent a novel type of material that are simple technology and easy to process, and is of relatively high dielectric constant, applications as flexible electronics.


Sign in / Sign up

Export Citation Format

Share Document