Contribution à l'étude des effets de charge sur l'émission X des matériaux isolants non métallisés

2002 ◽  
Vol 80 (6) ◽  
pp. 661-674
Author(s):  
K Raouadi ◽  
R Renoud ◽  
B Askri ◽  
B Yangui ◽  
Z Fakhfakh

The presence of charges perturbs the X-microanalysis on insulator samples. Attempts to suppress these effects have been fruitless and a better understanding of the charge phenomenon is the only way to a clear interpretation of the results of a X-microanalysis. From a simulation of the charges implanted by an electron beam on an insulator target, we compute, as a fuction of the integrated dose, the characteristics of the emitted X-rays, such as the generating function ϕ (ρ z) or the intensity of the characteristic lines. We underline the role of the electric field on the primary beam and on the electron trajectories in the target. These results allow the analysis of experimentally measured X-rays. Our studies on the effects of the diameter of the probe and on the exposure time led us to establish the best conditions for the successful X-microanalysis of an insulator. [Journal translation]

2007 ◽  
Vol 13 (5) ◽  
pp. 354-357 ◽  
Author(s):  
Raynald Gauvin

The derivation of a universal equation to compute the range of emitted X rays is presented for homogeneous bulk materials. This equation is based on two fundamental assumptions: the φ(ρz) curve of X-ray generation is constant and the ratio of the emitted to the generated X-ray range is equal to the ratio of the emitted to the generated X-ray intensity. An excellent agreement is observed with data obtained from Monte Carlo simulations of 200,000 electron trajectories in C, Al, Cu, Ag, Au, and an Fe–B alloy with boron weight fractions equal to 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, performed with the electron beam energy varied from 1 to 30 keV in 1-keV steps. When the ratio of the generated X-ray range to the photon mean free path is much smaller than one, the emission X-ray range is equal to the generated X-ray range, but when this ratio is much greater than one, the emission X-ray range is constant and is given by the product of the effective photon mean free path multiplied by the sine of the take-off angle.


In these experiments, pencils of the secondary, .... tertiary, cathode rays, emitted from the surface of a selected “target” which is bombarded by X-rays, are separated by an approximately homogeneous magnetic field; they are then, by means of a well-known focussing device, photographed as a sort of magnetic spectrum. Sufficiently detailed descriptions of the method are given in previous papers, which will be referred to as I to IV respectively. The primary radiation used in most of the new work was silver K + “white” radiation—practically unfiltered radiation from a gas-filled tube with silver anticathode. The results obtained in this part of the work are tabulated below in 2. Kellstrom’s values have been taken for the characteristic lines in the primary beam:—


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


Author(s):  
Y. Kokubo ◽  
W. H. Hardy ◽  
J. Dance ◽  
K. Jones

A color coded digital image processing is accomplished by using JEM100CX TEM SCAN and ORTEC’s LSI-11 computer based multi-channel analyzer (EEDS-II-System III) for image analysis and display. Color coding of the recorded image enables enhanced visualization of the image using mathematical techniques such as compression, gray scale expansion, gamma-processing, filtering, etc., without subjecting the sample to further electron beam irradiation once images have been stored in the memory.The powerful combination between a scanning electron microscope and computer is starting to be widely used 1) - 4) for the purpose of image processing and particle analysis. Especially, in scanning electron microscopy it is possible to get all information resulting from the interactions between the electron beam and specimen materials, by using different detectors for signals such as secondary electron, backscattered electrons, elastic scattered electrons, inelastic scattered electrons, un-scattered electrons, X-rays, etc., each of which contains specific information arising from their physical origin, study of a wide range of effects becomes possible.


2003 ◽  
Vol 10 (1/2) ◽  
pp. 45-52 ◽  
Author(s):  
R. E. Ergun ◽  
L. Andersson ◽  
C. W. Carlson ◽  
D. L. Newman ◽  
M. V. Goldman

Abstract. Direct observations of magnetic-field-aligned (parallel) electric fields in the downward current region of the aurora provide decisive evidence of naturally occurring double layers. We report measurements of parallel electric fields, electron fluxes and ion fluxes related to double layers that are responsible for particle acceleration. The observations suggest that parallel electric fields organize into a structure of three distinct, narrowly-confined regions along the magnetic field (B). In the "ramp" region, the measured parallel electric field forms a nearly-monotonic potential ramp that is localized to ~ 10 Debye lengths along B. The ramp is moving parallel to B at the ion acoustic speed (vs) and in the same direction as the accelerated electrons. On the high-potential side of the ramp, in the "beam" region, an unstable electron beam is seen for roughly another 10 Debye lengths along B. The electron beam is rapidly stabilized by intense electrostatic waves and nonlinear structures interpreted as electron phase-space holes. The "wave" region is physically separated from the ramp by the beam region. Numerical simulations reproduce a similar ramp structure, beam region, electrostatic turbulence region and plasma characteristics as seen in the observations. These results suggest that large double layers can account for the parallel electric field in the downward current region and that intense electrostatic turbulence rapidly stabilizes the accelerated electron distributions. These results also demonstrate that parallel electric fields are directly associated with the generation of large-amplitude electron phase-space holes and plasma waves.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 271
Author(s):  
Nisa Ulumuddin ◽  
Fanglin Che ◽  
Jung-Il Yang ◽  
Su Ha ◽  
Jean-Sabin McEwen

Despite its high thermodynamic stability, the presence of a negative electric field is known to facilitate the activation of CO2 through electrostatic effects. To utilize electric fields for a reverse water gas shift reaction, it is critical to elucidate the role of an electric field on a catalyst surface toward activating a CO2 molecule. We conduct a first-principles study to gain an atomic and electronic description of adsorbed CO2 on YSZ (111) surfaces when external electric fields of +1 V/Å, 0 V/Å, and −1 V/Å are applied. We find that the application of an external electric field generally destabilizes oxide bonds, where the direction of the field affects the location of the most favorable oxygen vacancy. The direction of the field also drastically impacts how CO2 adsorbs on the surface. CO2 is bound by physisorption when a +1 V/Å field is applied, a similar interaction as to how it is adsorbed in the absence of a field. This interaction changes to chemisorption when the surface is exposed to a −1 V/Å field value, resulting in the formation of a CO3− complex. The strong interaction is reflected through a direct charge transfer and an orbital splitting within the Olatticep-states. While CO2 remains physisorbed when a +1 V/Å field value is applied, our total density of states analysis indicates that a positive field pulls the charge away from the adsorbate, resulting in a shift of its bonding and antibonding peaks to higher energies, allowing a stronger interaction with YSZ (111). Ultimately, the effect of an electric field toward CO2 adsorption is not negligible, and there is potential in utilizing electric fields to favor the thermodynamics of CO2 reduction on heterogeneous catalysts.


Sign in / Sign up

Export Citation Format

Share Document