Theoretical aspects of magnon–magnon interactions in Heisenberg ferromagnets

1987 ◽  
Vol 65 (10) ◽  
pp. 1272-1279 ◽  
Author(s):  
P. D. Loly

Spin-wave interactions in ferromagnetic insulators have a well-established theoretical foundation, in contrast to the situation for antiferromagnets. These interactions may be classified into two groups according to whether the dominant aspects are of one- or two-magnon character. The weak interactions between spin waves excited at low temperatures are responsible for the success of "free" (or noninteracting) spin-wave calculations in explaining low-temperature thermodynamic properties. In contrast, the two-magnon aspects appear in connection with two-magnon Raman scattering, where pairs of magnons are created in close proximity and consequently interact strongly. Parallels with analogous systems, especially antiferromagnetic spin waves and phonons, are noted in reviewing the ferromagnetic case. Emphasis is placed on the structure of the theory, rather than on the wealth of experimental activity.

A theory is presented in which the effect of spin waves on the single-particle states of conduction electrons is obtained as well as the effect of the conduction electrons on the spin waves. Green function techniques are employed. The Hamiltonian is taken to contain the single-particle energies of the conduction electrons in the absence of interactions, the Coulomb interaction between electrons in Wannier states centred on the same lattice site C , and the interatomic exchange terms J ij . Interband integrals are neglected. The chain of equations for the single-particle Green functions is decoupled in such a way as to include the effects of the spin waves in the single-particle Green functions. The theory is worked out on the assumption that C is very much greater than the band width and the J ij so that at T ═ 0 the double occupation of Wannier orbital states is the minimum possible. The resulting single-particle occupation numbers are linear combinations of Fermi-Dirac functions. The low temperature spontaneous magnetization ξ is found to be a product of a spin-wave magnetization and a single-particle magnetization ξ s.p ., and so contains terms varying as T 1 and T 1 , and T 2 if both spin sub-bands are partially occupied in the ground state. The low temperature specific heat contains T and T 1 terms. The results of the Heisenberg model are obtained in the appropriate limit. Expressions for the spin-wave energy and its temperature dependence are discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
S. H. Guan ◽  
Y. Yang ◽  
Z. Jin ◽  
T. T. Liu ◽  
Y. Liu ◽  
...  

An investigation of spin waves interacting with antiferromagnetic spin textures is meaningful for future spintronic and magnonic-based memory and logic applications. In this work, we numerically study the skyrmion dynamics driven by circularly polarized spin waves in antiferromagnets and propose a method of suppressing the Hall motion. It is demonstrated that the application of two circularly polarized spin waves with opposite chirality allows the skyrmion motion straightly along the intersection line of the two spin wave sources. The skyrmion speed depending on these parameters of the spin waves and system is estimated, and a comparison with other methods is provided. Furthermore, two depinning behaviors of the skyrmion related to the strengths of the defect are also observed in the simulations. Thus, the proposed method could be used in precisely modulating the skyrmion dynamics, contributing to skyrmion-based memory device design.


1987 ◽  
Vol 01 (07n08) ◽  
pp. 315-321 ◽  
Author(s):  
KIYOSHI SOGO

New mechanism of superconductivity is presented, which utilizes antiferromagnetic spin waves. It is found that for the case of Ising like anisotropy the spin wave coherence strongly enhances the superconductive coupling constant, which gives rise to a rather high critical temperature. Sloppy spin wave mechanism is also suggested.


A qualitative discussion is given of the low-lying states of a ferromagnetic metal and the consequent low -temperature thermodynamic properties of the system. It is concluded that a typical low-lying state differs from the ground state by a number of independent particle excitations, such as are considered in Stoner’s collective electron theory, and a number of exciton-like excitations, in which an electron of minority spin is bound to a hole of majority spin, which correspond to spin waves. The low temperature specific heat and the deviation of the magnetization from saturation may then both be expressed as the sum of two terms, one typical of collective electron theory and one of spin wave theory. A formal proof is given of the existence of spin waves of long wavelength in metals and a general method of calculating their energies is outlined. Herring’s results on spin-wave energies are obtained as a special case.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Alloy Digest ◽  
2008 ◽  
Vol 57 (1) ◽  

Abstract Invar is an Fe-Ni alloy with 36% Ni content that exhibits the lowest expansion of known metals from very low temperatures up to approximately 230 deg C (445 deg F). Invar M93 is a cryogenic Invar with improved weldability. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear and bend strength as well as fracture toughness and fatigue. It also includes information on low temperature performance as well as forming and joining. Filing Code: FE-143. Producer or source: Metalimphy Precision Alloys.


2014 ◽  
Vol 986-987 ◽  
pp. 80-83
Author(s):  
Xiao Xue Zhang ◽  
Zhen Feng Wang ◽  
Cui Hua Li ◽  
Jian Hong Liu ◽  
Qian Ling Zhang

N-methyl-N-allylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR1ATFSI) with substantial supercooling behavior is synthesized to develop low temperature electrolyte for lithium-ion batteries. Additive fluoroethylene carbonate (FEC) in LiTFSI/PYR1ATFSI/EC/PC/EMC is found that it can reduce the freezing point. LiFePO4/Li coin cells with the FEC-PYR1ATFSI electrolyte exhibit good capacity retention, reversible cycling behavior at low temperatures. The good performance can be attributed to the decrease in the freezing point and the polarization of the composite electrolyte.


1972 ◽  
Vol 25 (7) ◽  
pp. 1411 ◽  
Author(s):  
LE Lyons ◽  
LJ Warren

The low-temperature fluorescence spectrum of purified vapour-grown anthracene single crystals is presented and the free-exciton emission distinguished from a number of defect or impurity bands present even in the purest crystals. In assigning the observed bands the symmetry of the active vibrations and the origin of background fluorescence and deformation bands are discussed. The phonon structure in the region of the fluorescence origin was found to be almost completely b-polarized. Emission of electronic origin (25103 cm-1) was too weak to be observed. Polarization ratios of the principal vibronio bands at 5.6 K are given.


2014 ◽  
Vol 14 (3) ◽  
pp. 479-488 ◽  
Author(s):  
T. Backhaus ◽  
R. de la Torre ◽  
K. Lyhme ◽  
J.-P. de Vera ◽  
J. Meeßen

AbstractSeveral investigations on lichen photobionts (PBs) after exposure to simulated or real-space parameters consistently reported high viability and recovery of photosynthetic activity. These studies focused on PBs within lichen thalli, mostly exposed in a metabolically inactive state. In contrast, a recent study exposed isolated and metabolically active PBs to the non-terrestrial stressor UVC254 nm and found strong impairment of photosynthetic activity and photo-protective mechanisms (Meeßen et al. in 2014b). Under space and Mars conditions, UVC is accompanied by other stressors as extreme desiccation and low temperatures. The present study exposed the PBs of Buellia frigida and Circinaria gyrosa, to UVC in combination with desiccation and subzero temperatures to gain better insight into the combined stressors' effect and the PBs' inherent potential of resistance. These effects were examined by chlorophyll a fluorescence which is a good indicator of photosynthetic activity (Lüttge & Büdel in 2010) and widely used to test the viability of PBs after (simulated) space exposure. The present results reveal fast recovery of photosynthetic activity after desiccation and subzero temperatures. Moreover, they demonstrate that desiccation and cold confer an additional protective effect on the investigated PBs and attenuate the PBs' reaction to another stressor – even if it is a non-terrestrial one such as UVC. Besides other protective mechanisms (anhydrobiosis, morphological–anatomical traits and secondary lichen compounds), these findings may help to explain the high resistance of lichens observed in astrobiological studies.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3171-3174
Author(s):  
F. F. BALAKIREV ◽  
J. B. BETTS ◽  
G. S. BOEBINGER ◽  
S. ONO ◽  
Y. ANDO ◽  
...  

We report low-temperature Hall coefficient in the normal state of the high-Tc superconductor Bi 2 Sr 2-x La x CuO 6+δ. The Hall coefficient was measured down to 0.5 K by suppressing superconductivity with a 60 T pulsed magnetic field. The carrier concentration was varied from overdoped to underdoped regimes by partially substituting Sr with La in a set of five samples. The observed saturation of the Hall coefficient at low temperatures suggests the ability to extract the carrier concentration of each sample. The most underdoped sample exhibits a diverging Hall coefficient at low temperatures, consistent with a depletion of carriers in the insulating ground state. The Hall number exhibits a sharp peak providing additional support for the existence of a phase boundary at the optimal doping.


Sign in / Sign up

Export Citation Format

Share Document