MECHANICAL CHARACTERIZATION OF NOTCHED HOT ROLLED MULTI-PHASE STEEL

Author(s):  
Ke Niu ◽  
Abdolhamid Akbarzadeh ◽  
Zengtao Chen

This paper presents a series of experimental and numerical studies on Hot Rolled Stretch Flanging steels. This study focuses on four prototyped Hot-Rolled Stretch Flanging steels (HR780SF). Circular- notched sheet steel samples are used to induce different stress triaxiality levels in the rolling direction of sheet materials. Digital image correlation technique measures the local true strain during the deformation process of the notched samples in uniaxial tensile test. The microstructure of the notched samples is examined to evaluate the effect of geometrical features of circular notches on the microstructural evolution during the plastic deformation. Finally, the numerical results obtained via a finite element simulation are validated by the collected experimental data. Our experimental studies reveal the possibility of crack formation along the width of HR780SF steels during the mechanical load. The crack formation, which deteriorates the structural performance of hot rolled steels, can be avoided by the heat treatment of samples prior to the mechanical tests. In addition, it is found that the effect of notch geometry on the stress state is much more considerable at the notch edge than the notch center.

Author(s):  
Puja Ghosal ◽  
Surajit Kumar Paul

Alteration of forming and failure limits due to planar anisotropy of the sheet metal significantly affects the safe forming operation region and finally successfully manufacturing of a sheet metal formed component. This article presents the effect of planar anisotropy on uniaxial tensile properties, forming and failure limits of cold-rolled ferritic and dual-phase steels. In-situ three dimensional digital image correlation technique is used to measure the evolution of local strain components during uniaxial tensile test. For both the steels, necking limit is highest for the specimen at an orientation of 90° to rolling direction, while failure limit is highest for those specimen whose orientation is 45° to rolling direction for ferritic steel, and both 0° and 90° to rolling direction for dual-phase steel. Uniaxial tensile deformation path for ferritic steel holds lower slope than dual-phase steel as depicted in major versus minor strain plot.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2163
Author(s):  
Krzysztof Żaba ◽  
Tomasz Trzepieciński ◽  
Sandra Puchlerska ◽  
Piotr Noga ◽  
Maciej Balcerzak

The paper is devoted to highlighting the potential application of the quantitative imaging technique through results associated with work hardening, strain rate and heat generated during elastic and plastic deformation. The aim of the research presented in this article is to determine the relationship between deformation in the uniaxial tensile test of samples made of 1-mm-thick nickel-based superalloys and their change in temperature during deformation. The relationship between yield stress and the Taylor–Quinney coefficient and their change with the strain rate were determined. The research material was 1-mm-thick sheets of three grades of Inconel alloys: 625 HX and 718. The Aramis (GOM GmbH, a company of the ZEISS Group) measurement system and high-sensitivity infrared thermal imaging camera were used for the tests. The uniaxial tensile tests were carried out at three different strain rates. A clear tendency to increase the sample temperature with an increase in the strain rate was observed. This conclusion applies to all materials and directions of sample cutting investigated with respect to the sheet-rolling direction. An almost linear correlation was found between the percent strain and the value of the maximum surface temperature of the specimens. The method used is helpful in assessing the extent of homogeneity of the strain and the material effort during its deformation based on the measurement of the surface temperature.


2010 ◽  
Vol 446 ◽  
pp. 157-169 ◽  
Author(s):  
Fethi Abbassi ◽  
Olivier Pantalé ◽  
Sébastien Mistou ◽  
Ali Zghal ◽  
Roger Rakotomalala

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as necking, fracture, springback, buckling and wrinkling. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. In the first part of this work, we focus on the traditional identification of the constitutive law using oriented tensile tests (0°, 45°, and 90° with respect to the rolling direction). A Digital Image Correlation (DIC) method is used in order to measure the displacements on the surface of the specimen and to analyze the necking evolution and the instability along the shear band. Therefore, bulge tests involving a number of die shapes (circular and elliptic) were developed. In a second step, a mixed numerical–experimental method is used for the identification of the plastic behavior of the stainless steel metal sheet. The initial parameters of the inverse identification were extracted from a uniaxial tensile test. The optimization procedure uses a combination of a Monte-Carlo and a Levenberg-Marquardt algorithm. In the second part of this work, according to some results obtained by SEM (Scaning Electron Microscopy) of the crack zones on the tensile specimens, a Gurson Tvergaard Needleman (GTN) ductile model of damage has been selected for the numerical simulations. This model was introduced in order to give informations concerning crack initiations during hydroforming. At the end of the paper, experimental and numerical comparisons of sheet metal forming applications are presented and validate the proposed approach.


2012 ◽  
Vol 730-732 ◽  
pp. 549-554
Author(s):  
Rui M. Branco ◽  
Pedro Prates ◽  
Marta C. Oliveira ◽  
Nataliya A. Sakharova ◽  
J. Valdemar Fernandes

The mechanical behaviour of heterogeneous specimens under uniaxial tensile test is studied using finite element analysis. The difference between mechanical properties of adjacent regions in the heterogeneous specimen creates constraints which alter the strain path relatively to pure tension. A methodology for determining the local stress-strain curves is proposed and successfully tested numerically on the heterogeneous specimen composed by two materials with dissimilar plastic properties. This methodology has recourse to the same type of variables which are usually obtained experimentally with the digital image correlation technique.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1097
Author(s):  
Umer Masood Chaudry ◽  
Seung-Chang Han ◽  
Fathia Alkelae ◽  
Tea-Sung Jun

In the present study, the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of friction stir welded (FSW) DP780 steel sheets was investigated. FSW was carried out at a constant tool rotation speed of 400 rpm and different welding speeds (200 mm/min and 400 min/min). A defect free weld was witnessed for both of the welding conditions. The mutual effect of severe plastic deformation and frictional heat generation by pin rotation during the FSW process resulted in grain refinement due to dynamic recrystallization in the stir zone (SZ) and thermo-mechanically affected zone (TMAZ). Lower tensile elongation and higher yield and ultimate tensile strengths were recorded for welded-samples as compared to the base material (BM) DP780 steel. The joints were subsequently annealed at various temperatures at 450–650 °C for 1 h. At higher annealing temperature, the work hardening rate of joints gradually decreased and subsequently failed in the softened heat-affected zone (HAZ) during the uniaxial tensile test. Reduction in yield strength and tensile strength was found in all PWHT conditions, though improvement in elongation was achieved by annealing at 550 °C. The digital image correlation analysis showed that an inhomogeneous strain distribution occurred in the FSWed samples, and the strain was particularly highly localized in the advancing side of interface zone. The nanoindentation measurements covering the FSWed joint were consistent with an increase of the annealing temperature. The various grains size in the BM, TMAZ, and SZ is the main factor monitoring the hardness distribution in these zones and the observed discrepancies in mechanical properties.


Author(s):  
Stijn Hertelé ◽  
Timothy Galle ◽  
Koen Van Minnebruggen ◽  
Wim De Waele ◽  
Otto Jan Huising

Standard pipe corrosion assessments are based on simplifying assumptions with respect to corrosion geometry and focus on pressure based loading. Moreover, when corrosion patches traverse girth welds, validity criteria to their assessment become impractically vague. The integrity of girth welds is additionally influenced by axial stresses, which may act in combination with hoop stress resulting from pressure. In an attempt to address these issues, the authors conducted a detailed assessment on a significant, highly irregular corrosion patch traversing a 12″ natural gas pipeline girth weld. The investigation comprises a full scale uniaxial tensile test and supporting detailed finite element (FE) analyses. Hereby, the model mesh adopts detailed geometrical characteristics resulting from a surface profile scan obtained from stereoscopic digital image correlation. The numerical model is validated based on the uniaxial tensile test, in the sense that plastic collapse and highly complex strain distributions are successfully reproduced. Finally, the FE model is used to explore axial tensile failure in presence of internal pressure.


Author(s):  
Piotr Kohut ◽  
Krzysztof Holak ◽  
Rafal Obuchowicz ◽  
Martyna Ekiert ◽  
Andrzej Mlyniec ◽  
...  

In this study, we develop a modeling and experimental framework for multiscale identification of the biomechanical properties of the human Achilles tendon (AT). For this purpose, we extend our coarse-grained model of collagen fibrous materials with a chemomechanical model of collagen type I decomposition. High-temperature degradation of molecular chains of collagen in a water environment was simulated using a reactive molecular dynamics (MD) method. The results from MDs simulations allowed us to define the Arrhenius equation for collagen degradation kinetics and calculate the energy of activation together with the frequency factor. Kinetic coefficients obtained from a MD simulations were further used to provide better calibration of the a coarse grained (CG) model of collagen denaturation. For the experimental part of our framework, we performed a uniaxial tensile test of the human AT with additional use of digital image correlation (DIC) for ex vivo strain tracking. Using a different path of strain tracking, we were able to include the inhomogeneity of deformation and, therefore, regional variations in tissue stiffness. Our results, both in modeling and the experimental part of the study, are in line with already existing reports and thus provide an improved approach for multiscale biomechanical and chemomechanical studies of the human AT.


2013 ◽  
Vol 58 (4) ◽  
pp. 1213-1217
Author(s):  
W. Fracz ◽  
F. Stachowicz ◽  
T. Trzepieciński ◽  
T. Pieją

Abstract Formability of sheet metal is dependent on the mechanical properties. Some materials form better than others - moreover, a material that has the best formability for one stamping may behave very poorly in a stamping of another configuration. For these reasons, extensive test programs are often carried out in an attempt to correlate material formability with value of some mechanical properties. The formability of sheet metal has frequently been expressed by the value of strain hardening exponent and plastic anisotropy ratio. The stress-strain and hardening behaviour of a material is very important in determining its resistance to plastic instability. However experimental studies of formability of various materials have revealed basic differences in behaviour, such as the ”brass-type” and the ”steel-type”, exhibiting respectively, zero and positive dependence of forming limit on the strain ratio. In this study mechanical properties and the Forming Limit Diagram of the AMS 5599 sheet metal were determined using uniaxial tensile test and Marciniak’s flat bottomed punch test respectively. Different methods were used for the FLD calculation - results of these calculations were compared with experimental results


Sign in / Sign up

Export Citation Format

Share Document