Infrared Investigation of H2S Adsorption and Decomposition on Alumina and on Alumina Supported Molybdenum Sulfide

1972 ◽  
Vol 50 (21) ◽  
pp. 3416-3423 ◽  
Author(s):  
T. L. Slager ◽  
C. H. Amberg

Adsorption and subsequent reaction of H2S on alumina gave major i.r. bands at 1341, 1568, 1625, and 3400 cm−1. Relative band intensities were used to follow the first order decomposition of adsorbed H2S and formation of H2O. Rate constants of the surface reaction at 23, 55, and 80 °C were 0.70, 1.48, and 3.42 × 10−3 s−1, respectively. A mechanism consistent with the observed spectral and kinetic data involved adsorption to an exposed Al ion forming an Al—S surface bond, and hydrogen bonding to neighboring O and OH species. It was assumed that the sulfur remained on the surface as a sulfide. The 1568 cm−1 band was discussed in terms of an Al—O species.With adsorption on MoS2–Al2O3, bands appeared at 1330 and 1575 cm−1. Behavior in all respects was similar to that observed on the alumina support alone.


2004 ◽  
Vol 08 (11) ◽  
pp. 1269-1275 ◽  
Author(s):  
Ahsan Habib ◽  
Masaaki Tabata ◽  
Ying Guang Wu

The kinetics of the reaction of the tetrakis(1-methylpyridium-4-yl)porphyrin tetracation, [ H 2( TMPyP )]4+, with gold(III) ions were studied along with equilibria of gold(III) species in aqueous medium at 25°C, I = 0.10 M ( NaNO 3). The equilibrium constants for the formation of [ AuCl 4-n( OH ) n ]- ( n = 0,…,4), defined as β n = [ AuCl 4- n ( OH ) n ]- [ Cl -] n / [ AuCl 4-][ OH -] n were found to be that log β1 = 7.94 ± 0.03, log β2 = 15.14 ± 0.03, log β3 = 21.30 ± 0.05 and log β4 = 26.88 ± 0.05. The overall reaction was first order with respect to each of the total [ Au (III)] and [ H 2 TMPyP 4+]. On the basis of pH dependence on rate constants and the hydrolysis of gold(III), the rate expression can be written as d [ Au ( TMPyP )5+]/ dt = ( k 1[ AuCl 4-] + k2[ AuCl 3( OH )-] + k3[ AuCl 2( OH )2-] + k4[ AuCl ( OH )3-])[ H 2 TMPyP 4+], where k1, k2, k3 and k4 were found to be (2.16 ± 0.31) × 10-1, (6.56 ± 0.19) × 10-1, (1.07 ± 0.24) × 10-1, and (0.29 ± 0.21) × 10-1 M -1. s -1, respectively. The kinetic data revealed that the trichloromonohydroxogold(III) species, [ AuCl 3( OH )]-, is the most reactive. The higher reactivity of [ AuCl 3( OH )]- is explained by hydrogen bonding formation between the hydroxyl group of [ AuCl 3( OH )]- and the pyrrole hydrogen atom of [ H 2( TMPyP )]4+. Furthermore, applying the Fuoss equation to the observed rate constants at different ionic strengths, the apparent net charge of [ H 2( TMPyP )]4+ was calculated to be +3.5.



1949 ◽  
Vol 27b (4) ◽  
pp. 303-317 ◽  
Author(s):  
Maurice M. Wright ◽  
Hugh S. Taylor

The interaction of methane and methane-d4 on nickel has been re-examined. The data strengthen the previous concept of a dissociative adsorption of methane on the catalyst. The kinetic data indicate first-order disappearance of methane-d4 with an activation energy of 20.9 kcal. between 100° and 255 °C. Poisoning by carbonaceous residues occurs at all temperatures. First-order kinetics are indicated for the formation of methane-d3 and methane-d2 on the catalyst surface. Reaction of hydrogen with surface residues, after an exchange reaction, indicate that CX, CX2, and CX3 fragments are present on the surface where X is H or D. Higher temperatures favor an equilibrium between these fragments on the surface, equilibrium being displaced towards CX3 as temperature increases. This equilibrium will be dependent on the heats of adsorption of the fragments and of hydrogen on the surface and therefore involves also the metal used as catalyst. The data suggest a basic approach to the mechanism of the Fischer–Tropsch synthesis on metal catalysts.



1977 ◽  
Vol 23 (9) ◽  
pp. 1527-1530 ◽  
Author(s):  
R M Shoucri ◽  
M Pouliot

Abstract The Jaffé reaction for creatinine assay appears to follow pseudo-first-order kinetics; first-order rate constants are different for different samples. Rate constants for 10 different serum samples varied from a low value of 0.0040 +/- 0.0003 s-1 to 0.0084 +/- 0.0008 s-1. We describe an approach for determining first-order rate constants from kinetic data and discuss the effects of the above observations on the mathematical formulations required for reliable kinetic determinations of creatinine.



2009 ◽  
Vol 44 (3) ◽  
pp. 253-262 ◽  
Author(s):  
Jes Vollertsen ◽  
Svein Ole Åstebøl ◽  
Jan Emil Coward ◽  
Tor Fageraas ◽  
Asbjørn Haaning Nielsen ◽  
...  

Abstract A wet detention pond in Norway has been monitored for 12 months. The pond receives runoff from a highway with a traffic load of 42,000 average daily traffic. Hydraulic conditions in terms of inflow, outflow, and pond water level were recorded every minute. Water quality was monitored by volume proportional inlet and outlet samples. During most of the year, excellent pollutant removal was achieved; however, during two snowmelt events the pollutant removal was poor or even negative. The two snowmelt events accounted for one third of the annual water load and for a substantial part of the annual pollutant discharge. The performance of the pond was analyzed using a dynamic model and pollutant removal was simulated by first-order kinetics. Good agreement between measurement and simulation could be achieved only when choosing different first-order rate constants for different parts of the year. However, no relation between the rate constants obtained and the time of year could be identified, and neither did the rate constants for different pollutants correlate. The study indicates that even detailed measurements of pollutant input and output allow only average performance to be simulated and are insufficient for simulating event-based variability in pond performance.



1994 ◽  
Vol 30 (11) ◽  
pp. 143-146
Author(s):  
Ronald D. Neufeld ◽  
Christopher A. Badali ◽  
Dennis Powers ◽  
Christopher Carson

A two step operation is proposed for the biodegradation of low concentrations (< 10 mg/L) of BETX substances in an up flow submerged biotower configuration. Step 1 involves growth of a lush biofilm using benzoic acid in a batch mode. Step 2 involves a longer term biological transformation of BETX. Kinetics of biotransformations are modeled using first order assumptions, with rate constants being a function of benzoic acid dosages used in Step 1. A calibrated computer model is developed and presented to predict the degree of transformation and biomass level throughout the tower under a variety of inlet and design operational conditions.



1985 ◽  
Vol 40 (11) ◽  
pp. 1128-1132
Author(s):  
Y. Riad ◽  
Adel N. Asaad ◽  
G.-A. S. Gohar ◽  
A. A. Abdallah

Sodium hydroxide reacts with α -(4-nitrobenzylthio)-acetic acid in aqueous-dioxane media to give 4,4'-diformylazoxybenzene as the main product besides 4,4'-dicarboxyazoxybenzene and a nitrone acid. This reaction was kinetically studied in presence of excess of alkali in different dioxane-water media at different temperatures. It started by a fast reversible a-proton abstraction step followed by two consecutive irreversible first-order steps forming two intermediates (α -hydroxy, 4-nitrosobenzylthio)-acetic acid and 4-nitrosobenzaldehyde. The latter underwent a Cannizzaro's reaction, the products of which changed in the reaction medium into 4,4'-diformylazoxybenzene and 4,4'-dicarboxyazoxybenzene. The rate constants and the thermodynamic parameters of the two consecutive steps were calculated and discussed. A mechanism was put forward for the formation of the nitrone acid.Other six 4-nitrobenzyl, aryl sulphides were qualitatively studied and they gave mainly 4,4'-diformylazoxybenzene beside 4,4'-dicarboxyazoxybenzene or its corresponding azo acid.



1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).



1987 ◽  
Author(s):  
Moideen P Jamaluddin

Platelet aggregation kinetics, according to the particle collision theory, generally assumed to apply, ought to conform to a second order type of rate law. But published data on the time-course of ADP-induced single platelet recruitment into aggregates were found not to do so and to lead to abnormal second order rate constants much larger than even their theoretical upper bounds. The data were, instead, found to fit a first order type of rate law rather well with rate constants in the range of 0.04 - 0.27 s-1. These results were confirmed in our laboratory employing gelfiltered calf platelets. Thus a mechanism much more complex than hithertofore recognized, is operative. The following kinetic scheme was formulated on the basis of information gleaned from the literature.where P is the nonaggregable, discoid platelet, A the agonist, P* an aggregable platelet form with membranous protrusions, and P** another aggregable platelet form with pseudopods. Taking into account the relative magnitudes of the k*s and assuming aggregation to be driven by hydrophobic interaction between complementary surfaces of P* and P** species, a rate equation was derived for aggregation. The kinetic scheme and the rate equation could account for the apparent first order rate law and other empirical observations in the literature.



1976 ◽  
Vol 29 (2) ◽  
pp. 443 ◽  
Author(s):  
MA Haleem ◽  
MA Hakeem

Kinetic data are reported for the decarboxylation of β-resorcylic acid in resorcinol and catechol for the first time. The reaction is first order. The observation supports the view that the decomposition proceeds through an intermediate complex mechanism. The parameters of the absolute reaction rate equation are calculated.



Sign in / Sign up

Export Citation Format

Share Document