Hydrogen–Water Deuterium Exchange over Graphon Supported Group VIII Noble Metals

1973 ◽  
Vol 51 (24) ◽  
pp. 4031-4037 ◽  
Author(s):  
Norman Henry Sagert ◽  
Rita Mary Louise Pouteau

Specific activities of Group VIII noble metals supported on Graphon have been determined for hydrogen–water deuterium exchange. Metal surface areas, which are required to calculate specific activities, were measured by hydrogen chemisorption, and by reaction of hydrogen with chemisorbed oxygen. For the second triad metals, ruthenium, rhodium, and palladium, and in the temperature range 140 to 225 °C, the variation of activity was Ru < Rh > Pd. For the third triad metals, osmium, iridium, and platinum, the variation of activities was Os < Ir < Pt in the same range of temperature. Apparent activation energies were measured over this temperature range, and orders of reaction with respect to hydrogen and water were measured at 160 °C (200 °C for Pt). From these data, activation energies for the surface exchange reaction were calculated. In the second triad the activation energies decrease slightly with increasing atomic number, but in the third triad they decrease quite markedly with increasing atomic number. A good correlation was obtained between the activation energy for surface exchange and the thermionic work function of the metal. This supports our earlier suggestion that Graphon is able to donate electrons to the metal and thus lower the activation energy for the surface exchange.

1974 ◽  
Vol 52 (16) ◽  
pp. 2960-2967 ◽  
Author(s):  
Norman H. Sagert ◽  
Rita M. L. Pouteau

Specific activities of unsupported powders of all six Group VIII noble metals have been determined for hydrogen – water deuterium isotope exchange. The metal surface areas, which are required to calculate the specific activities were measured by hydrogen chemisorption and were checked by electron microscopy. Specific activities were measured as a function of temperature in the range 353 to 573 K and also as a function of the partial pressure of hydrogen and water at suitable temperatures and over a tenfold range of partial pressures.The variation in the specific activities was Pd < Ir ≤ Ru < Rh < Os < Pt, and these specific activities varied over a range of about 1000. The observed orders with respect to hydrogen and water are shown to be consistent with a mechanism in which chemisorbed hydrogen atoms exchange with physically adsorbed water.From the orders and the apparent activation energies, the chemical activation energies (E0) were calculated. These varied randomly within the range 61 ± 6 kJ mol−1 for all the metals studied. Previously we showed that there was a correlation of E0 with the work function of the metal when metals were supported on a highly graphitized carbon black, and suggested that electron donation from the carbon to the metal was responsible for the correlation. This suggestion is supported by the present results which show that E0 is relatively constant for all six metals in the absence of a support.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


1960 ◽  
Vol 13 (4) ◽  
pp. 431 ◽  
Author(s):  
JA Allen

The thermal decomposition of precipitated silver(I) oxide in a vacuum has been studied over the range 100-350 �C. Three regions are identified : in the fist, 100-200 �C, the activation energy is 30 kcal, 5 per cent. of the total oxygen is evolved, and the lattice parameter increases to a limiting value ; in the second, 200-300 �C, the activation energy is 50 kcal, and a further 1-2 per cent. oxygen is evolved; in the third, above 300 �C, metallic silver crystallizes, the oxide lattice contracts to a constant value, and the activation energy becomes 36 kcal. The activation energies in the three regions are interpreted as being associated, respectively, with (i) the diffusion of silver into the oxide lattice, (ii) the formation of aggregates of silver " atoms " not conforming to the normal silver lattice in an oxide lattice saturated with silver, and (iii) the reaction at the interface between metallic silver and the oxide.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4832
Author(s):  
J.J. Ramos-Hernandez ◽  
C.D. Arrieta-Gonzalez ◽  
J.G. Chacon-Nava ◽  
E. Porcayo-Palafox ◽  
M. Sanchez-Carrillo ◽  
...  

In this work, the effect of the addition of noble metals on the order–order disorder process of the L12 structure corresponding to the intermetallic Ni3Al is analyzed. Stoichiometric, nonstoichiometric, and quasi-binary compositions doped with noble metals such as Ag, Au, Pd, and Pt (1 at%) were analyzed. It was observed that depending on the composition, there is a modification in the activation energies calculated from the two time constants that characterize the disorder process. The statistic of atomic jumps was typified based on the configuration of the window to be crossed and, with this, it was identified that the origin of the negative activation energy of the long disorder process is due to an increase in the corresponding energy of the AlAl-Ni jump through unnatural windows.


2012 ◽  
Vol 1424 ◽  
Author(s):  
Daniel J. Pyke ◽  
Robert G. Elliman ◽  
Jeffrey C. McCallum

ABSTRACTHydrogen blister rates in Si (100), Si (111) and Ge (100) substrates are compared as a function of annealing temperature and time, for a range of implant energies and fluences. For each material, the rate of blister formation was found to exhibit Arrhenius behavior and to be characterised by a single activation energy over the temperature range examined. The extracted activation energies were 2.28±0.03 eV, 2.17±0.06 eV and 1.4±0.03 eV for (100) Si; (111) Si and (100) Ge, respectively. These results are compared with reported measurements and discussed in relation to proposed models of hydrogen blistering.


2021 ◽  
Vol 10 (1) ◽  
pp. 011-020
Author(s):  
Luyao Kou ◽  
Junjing Tang ◽  
Tu Hu ◽  
Baocheng Zhou ◽  
Li Yang

Abstract Generally, adding a certain amount of an additive to pulverized coal can promote its combustion performance. In this paper, the effect of CaO on the combustion characteristics and kinetic behavior of semi-coke was studied by thermogravimetric (TG) analysis. The results show that adding proper amount of CaO can reduce the ignition temperature of semi-coke and increase the combustion rate of semi-coke; with the increase in CaO content, the combustion rate of semi-coke increases first and then decreases, and the results of TG analysis showed that optimal addition amount of CaO is 2 wt%. The apparent activation energy of CaO with different addition amounts of CaO was calculated by Coats–Redfern integration method. The apparent activation energy of semi-coke in the combustion reaction increases first and then decreases with the increase in CaO addition. The apparent activation energies of different samples at different conversion rates were calculated by Flynn–Wall–Ozawa integral method. It was found that the apparent activation energies of semi-coke during combustion reaction decreased with the increase in conversion.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoguo Wang ◽  
Jian Qin ◽  
Hiromi Nagaumi ◽  
Ruirui Wu ◽  
Qiushu Li

The hot deformation behaviors of homogenized direct-chill (DC) casting 6061 aluminum alloys and Mn/Cr-containing aluminum alloys denoted as WQ1 were studied systematically by uniaxial compression tests at various deformation temperatures and strain rates. Hot deformation behavior of WQ1 alloy was remarkably changed compared to that of 6061 alloy with the presence of α-Al(MnCr)Si dispersoids. The hyperbolic-sine constitutive equation was employed to determine the materials constants and activation energies of both studied alloys. The evolution of the activation energies of two alloys was investigated on a revised Sellars’ constitutive equation. The processing maps and activation energy maps of both alloys were also constructed to reveal deformation stable domains and optimize deformation parameters, respectively. Under the influence of α dispersoids, WQ1 alloy presented a higher activation energy, around 40 kJ/mol greater than 6061 alloy’s at the same deformation conditions. Dynamic recrystallization (DRX) is main dynamic softening mechanism in safe processing domain of 6061 alloy, while dynamic recovery (DRV) was main dynamic softening mechanism in WQ1 alloy due to pinning effect of α-Al(MnCr)Si dispersoids. α dispersoids can not only resist DRX but also increase power required for deformation of WQ1 alloy. The microstructure analysis revealed that the flow instability was attributed to the void formation and intermetallic cracking during hot deformation of both alloys.


2001 ◽  
Vol 664 ◽  
Author(s):  
Stephan Heck ◽  
Howard M. Branz

ABSTRACTWe report experimental results that help settle apparent inconsistencies in earlier work on photoconductivity and light-induced defects in hydrogenated amorphous silicon (a-Si:H) and point toward a new understanding of this subject. After observing that light-induced photoconductivity degradation anneals out at much lower T than the light-induced increase in deep defect density, Han and Fritzsche[1] suggested that two kinds of defects are created during illumination of a-Si:H. In this view, one kind of defect degrades the photoconductivity and the other increases defect sub-bandgap optical absorption. However, the light-induced degradation model of Stutzmann et al.[2] assumes that photoconductivity is inversely proportional to the dangling-bond defect density. We observe two kinds of defects that are distinguished by their annealing activation energies, but because their densities remain in strict linear proportion during their creation, the two kinds of defects cannot be completely independent.In our measurements of photoconductivity and defect absorption (constant photocurrent method) during 25°C light soaking and during a series of isochronal anneals between 25 < T < 190°C, we find that the absorption measured with E ≤1.1 eV, first increases during annealing, then exhibits the usual absorption decrease found for deeper defects. The maximum in this absorption at E ≤1.1eV occurs simultaneously with a transition from fast to slow recovery of photoconductivity. The absorption for E ≤1.1eV shows two distinct annealing activation energies: the signal rises with about 0.87 eV and falls with about 1.15 eV. The 0.87 eV activation energy roughly equals the activation energy for the dominant, fast, recovery of photoconductivity. The 1.15 eV activation energy roughly equals the single activation energy for annealing of the light-induced dangling bond absorption.


2018 ◽  
Vol 924 ◽  
pp. 333-338 ◽  
Author(s):  
Roberta Nipoti ◽  
Alberto Carnera ◽  
Giovanni Alfieri ◽  
Lukas Kranz

The electrical activation of 1×1020cm-3implanted Al in 4H-SiC has been studied in the temperature range 1500 - 1950 °C by the analysis of the sheet resistance of the Al implanted layers, as measured at room temperature. The minimum annealing time for reaching stationary electrical at fixed annealing temperature has been found. The samples with stationary electrical activation have been used to estimate the thermal activation energy for the electrical activation of the implanted Al.


Sign in / Sign up

Export Citation Format

Share Document