The Thermal Decomposition of Silver(I) Oxide

1960 ◽  
Vol 13 (4) ◽  
pp. 431 ◽  
Author(s):  
JA Allen

The thermal decomposition of precipitated silver(I) oxide in a vacuum has been studied over the range 100-350 �C. Three regions are identified : in the fist, 100-200 �C, the activation energy is 30 kcal, 5 per cent. of the total oxygen is evolved, and the lattice parameter increases to a limiting value ; in the second, 200-300 �C, the activation energy is 50 kcal, and a further 1-2 per cent. oxygen is evolved; in the third, above 300 �C, metallic silver crystallizes, the oxide lattice contracts to a constant value, and the activation energy becomes 36 kcal. The activation energies in the three regions are interpreted as being associated, respectively, with (i) the diffusion of silver into the oxide lattice, (ii) the formation of aggregates of silver " atoms " not conforming to the normal silver lattice in an oxide lattice saturated with silver, and (iii) the reaction at the interface between metallic silver and the oxide.

Fibers ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 84
Author(s):  
Maria Mironova ◽  
Igor Makarov ◽  
Lyudmila Golova ◽  
Markel Vinogradov ◽  
Georgy Shandryuk ◽  
...  

Comparative studies of the structure and thermal behavior of cellulose and composite precursors with additives of silyl-substituted acetylene and alkoxysilanes were carried out. It is shown that the introduction of silicon-containing additives into the cellulose matrix influenced the thermal behavior of the composite fibers and the carbon yield after carbonization. Comparison of the activation energies of the thermal decomposition reaction renders it possible to determine the type of additive and its concentration, which reduces the energy necessary for pyrolysis. It is shown that the C/O ratio in the additive and the presence of the Si–C bond affected the activation energy and the temperature of the beginning and the end of the pyrolysis reaction.


Silicon tetrafluoride accelerates the decomposition of di-tertiary butyl peroxide, the rate constant k n,x for a given pressure, n , of the peroxide rising with the fluoride pressure, x , to a limiting value k n ,∞ . This value is different for different values of n . The activation energy of the induced reaction is 27 ± 1 kcal compared with 37 kcal for the uncatalyzed reaction. The products are little different from those of the normal decomposition except that the ratio of methane to ethane is slightly increased. The order of effectiveness of fluorides is SiF 4 > SF 6 > CF 4 , the inverse order of the ease with which they should release fluorine atoms. Carbon tetrachloride causes acceleration comparable with that caused by the silicon fluoride with a much more drastic shift in the product ratios. The mechanism of these actions is discussed in relation to the extended theory of unimolecular reactions.


1973 ◽  
Vol 51 (24) ◽  
pp. 4031-4037 ◽  
Author(s):  
Norman Henry Sagert ◽  
Rita Mary Louise Pouteau

Specific activities of Group VIII noble metals supported on Graphon have been determined for hydrogen–water deuterium exchange. Metal surface areas, which are required to calculate specific activities, were measured by hydrogen chemisorption, and by reaction of hydrogen with chemisorbed oxygen. For the second triad metals, ruthenium, rhodium, and palladium, and in the temperature range 140 to 225 °C, the variation of activity was Ru < Rh > Pd. For the third triad metals, osmium, iridium, and platinum, the variation of activities was Os < Ir < Pt in the same range of temperature. Apparent activation energies were measured over this temperature range, and orders of reaction with respect to hydrogen and water were measured at 160 °C (200 °C for Pt). From these data, activation energies for the surface exchange reaction were calculated. In the second triad the activation energies decrease slightly with increasing atomic number, but in the third triad they decrease quite markedly with increasing atomic number. A good correlation was obtained between the activation energy for surface exchange and the thermionic work function of the metal. This supports our earlier suggestion that Graphon is able to donate electrons to the metal and thus lower the activation energy for the surface exchange.


Further evidence supports the view that the thermal decomposition of paraffin hydro­carbons occurs by simultaneous chain and non-chain (molecular) mechanisms, the latter being isolated by addition of suitable inhibitors such as nitric oxide. It is concluded that certain small surface effects are secondary disturbances of an essentially homogeneous reaction. With one group of hydrocarbons, type 1, including ethane (propane), iso -butane, iso -pentane, neo -pentane and neo -hexane, this molecular reaction is of the normal unimolecular kind, showing a single transition from the first order towards the second as the pressure drops, and an activation energy which is independent of the initial pressure. In the second group, type 2, including n -butane and higher normal paraffins, 2∙3-dimethyl butane, 2-methyl pentane and 3-methyl pentane, the molecular reaction seems to be a super­position of two unimolecular reactions with different pressure dependences and different activation energies. There is a double order transition, and a marked variation with pressure of the apparent activation energy. This apparent activation energy is influenced by the addition of certain gases (propylene, ethane, propane) in such a way as to be in any given case a unique function of the total pressure of paraffin plus added gas. The frequency factors in the equation k = A e -E/RT have been determined. With the paraffins of type 2, the ‘high- pressure’ components of the reaction give values within the range expected by the theories which relate A to a vibration frequency, and assume the localization of the critical energy in a single bond. With some of the paraffins of type 1 the frequency factors are outside the probable range (10 12 to 10 14 s -1 ), and the values suggest that the transition states may be less sharply defined than the localization condition demands. The apparent values of the frequency factors associated with the ‘low-pressure’ components of the reactions are still higher and appear to demand a special interpretation which must be the subject of further investigation.


2017 ◽  
Vol 5 (2) ◽  
pp. 50
Author(s):  
Razak Wahab ◽  
Mohd Tamizi Mustafa ◽  
Norashikin Fauzi ◽  
Hashim Samsi

The thermal degradation of matured 4-year-old culms of cultivated tropical bamboo Bambusa vulgariswas studied and analyzed. The analysis using the Fourier Transform Infrared Spectroscopy and Thermal Gravimetric Analysis revealed the presence of basic functional groups in the bamboo which consists mainly of ester, carbonyl, and hydroxyl groups. The chemicals present in the bamboo vary depending on the location of the samples taken from the bamboo culms. The moisture content and extractive were omitted in the kinetic study since theyconstituted less than 10% of the overall chemicals in bamboo and observed below 100℃. Low reactivity of lignin components and hemicellulose in bamboo occurred due to the peculiarities of the chemical structure and composition. The mechanism of the decomposition reactions taken as a three-step reaction which involved the activation energies and dynamics related to volatile fractions of hemicellulose, cellulose, and lignin. Activation energies of 46, 100, 105, 127, and 236 kJ/molapplied for all of the bamboos. The activation energy carried could provide better insight into the thermal decomposition process. It provides more information on critical energy needed to start a reaction. The decomposition activation energy range obtained could assist in understanding the thermal decomposition stability of the bamboo fibers and application in natural fiber reinforced polymer composite industry.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


2021 ◽  
Vol 10 (1) ◽  
pp. 011-020
Author(s):  
Luyao Kou ◽  
Junjing Tang ◽  
Tu Hu ◽  
Baocheng Zhou ◽  
Li Yang

Abstract Generally, adding a certain amount of an additive to pulverized coal can promote its combustion performance. In this paper, the effect of CaO on the combustion characteristics and kinetic behavior of semi-coke was studied by thermogravimetric (TG) analysis. The results show that adding proper amount of CaO can reduce the ignition temperature of semi-coke and increase the combustion rate of semi-coke; with the increase in CaO content, the combustion rate of semi-coke increases first and then decreases, and the results of TG analysis showed that optimal addition amount of CaO is 2 wt%. The apparent activation energy of CaO with different addition amounts of CaO was calculated by Coats–Redfern integration method. The apparent activation energy of semi-coke in the combustion reaction increases first and then decreases with the increase in CaO addition. The apparent activation energies of different samples at different conversion rates were calculated by Flynn–Wall–Ozawa integral method. It was found that the apparent activation energies of semi-coke during combustion reaction decreased with the increase in conversion.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoguo Wang ◽  
Jian Qin ◽  
Hiromi Nagaumi ◽  
Ruirui Wu ◽  
Qiushu Li

The hot deformation behaviors of homogenized direct-chill (DC) casting 6061 aluminum alloys and Mn/Cr-containing aluminum alloys denoted as WQ1 were studied systematically by uniaxial compression tests at various deformation temperatures and strain rates. Hot deformation behavior of WQ1 alloy was remarkably changed compared to that of 6061 alloy with the presence of α-Al(MnCr)Si dispersoids. The hyperbolic-sine constitutive equation was employed to determine the materials constants and activation energies of both studied alloys. The evolution of the activation energies of two alloys was investigated on a revised Sellars’ constitutive equation. The processing maps and activation energy maps of both alloys were also constructed to reveal deformation stable domains and optimize deformation parameters, respectively. Under the influence of α dispersoids, WQ1 alloy presented a higher activation energy, around 40 kJ/mol greater than 6061 alloy’s at the same deformation conditions. Dynamic recrystallization (DRX) is main dynamic softening mechanism in safe processing domain of 6061 alloy, while dynamic recovery (DRV) was main dynamic softening mechanism in WQ1 alloy due to pinning effect of α-Al(MnCr)Si dispersoids. α dispersoids can not only resist DRX but also increase power required for deformation of WQ1 alloy. The microstructure analysis revealed that the flow instability was attributed to the void formation and intermetallic cracking during hot deformation of both alloys.


2014 ◽  
Vol 983 ◽  
pp. 190-193
Author(s):  
Cai Yun Sun ◽  
Yong Li Yang ◽  
Ming Gao

Wood has been treated with amino resins and amino resins modified with phosphoric acid to impart flame retardancy. The thermal degradation of samples has been studied by thermogravimetry (TG) in air. From the resulting data, kinetic parameters for different stages of thermal degradation are obtained following the method of Broido. For the decomposition of wood and flame retardant wood, the activation energy is found to decrease from 122 to 72 kJmol-1.


1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


Sign in / Sign up

Export Citation Format

Share Document