Biologically active acyclonucleoside analogues. II. The synthesis of 9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]guanine (BIOLF-62)

1982 ◽  
Vol 60 (24) ◽  
pp. 3005-3010 ◽  
Author(s):  
Kelvin K. Ogilvie ◽  
Ukken O. Cheriyan ◽  
Bruno K. Radatus ◽  
Kendall O. Smith ◽  
Karen S. Galloway ◽  
...  

The chemical synthesis of 9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]guanine is described. This compound, known as BIOLF-62, is active against herpesviruses. This compound is a member of a novel class of nucleoside analogues which lack a rigid carbohydrate ring, but which possess all of the functional groups of naturally occurring deoxynucleosides.

2011 ◽  
Vol 83 (3) ◽  
pp. 435-443 ◽  
Author(s):  
Ari M. P. Koskinen

Nature provides us with a wonderful pool of enantiopure starting materials for synthesis: amino acids, sugars, and many (but not all!) terpenes can be isolated even in large quantities in an uncompromised 100 % ee. Vicinal amino alcohols constitute a versatile group of organic structures; they are, in principle, available in enantiopure form from the chiral pool compounds or through chiral catalysis; they are potent intermediates for the synthesis of natural products and medicinally/biologically active compounds, and they provide a highly desirable scaffold for the construction of ligands for metals as well as organocatalysts. These new techniques will open up valuable new possibilities for the invention of new technologies for chemical synthesis, the desired course of chemical discoveries for the future. A robust entry to enantiopure vicinal amino alcohols from inexpensive naturally occurring amino acids has therefore become a key challenge for our endeavors in the development of methodology.


Author(s):  
Shukla PK ◽  
Singh MP ◽  
Patel R

Indole and its derivatives have engaged a unique place in the chemistry of nitrogen heterocyclic compounds. The recognition of the plant growthhormone, heteroauxin, the significant amino acids, tryptamine & tryptophan and anti-inflammatory drug, indomethacine are the imperativederivatives of indole which have added stimulus to this review work. Isatin (1H-indole-2,3-dione), an indole derivative of plant origin. Althoughit is a naturally occurring compound, but was synthesized by Erdmann and Laurent in 1840 before it was found in nature. Isatin is a versatileprecursor for many biologically active molecules and its diversified nature makes it a versatile substrate for further modifications. It is concernedin many pharmacological activities like anti-malarial, antiviral, anti-allergic, antimicrobial etc; isatin and its derivatives have been also found todemonstrate promising outcomes against various cancer cell lines. This review provides a brief overview on the recent advances and futureperspectives on chemistry and biological aspects of isatin and its derivatives reported in the recent past.


2019 ◽  
Vol 23 (16) ◽  
pp. 1778-1788 ◽  
Author(s):  
Gurpreet Kaur ◽  
Arvind Singh ◽  
Kiran Bala ◽  
Mamta Devi ◽  
Anjana Kumari ◽  
...  

A simple, straightforward and efficient method has been developed for the synthesis of (E)-3-(arylimino)indolin-2-one derivatives and (E)-2-((4-methoxyphenyl)imino)- acenaphthylen-1(2H)-one. The synthesis of these biologically-significant scaffolds was achieved from the reactions of various substituted anilines and isatins or acenaphthaquinone, respectively, using commercially available, environmentally benign and naturally occurring organic acids such as mandelic acid or itaconic acid as catalyst in aqueous medium at room temperature. Mild reaction conditions, energy efficiency, good to excellent yields, environmentally benign conditions, easy isolation of products, no need of column chromatographic separation and the reusability of reaction media are some of the significant features of the present protocol.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 196
Author(s):  
Muhammad Bilal ◽  
Leonardo Vieira Nunes ◽  
Marco Thúlio Saviatto Duarte ◽  
Luiz Fernando Romanholo Ferreira ◽  
Renato Nery Soriano ◽  
...  

Naturally occurring biological entities with extractable and tunable structural and functional characteristics, along with therapeutic attributes, are of supreme interest for strengthening the twenty-first-century biomedical settings. Irrespective of ongoing technological and clinical advancement, traditional medicinal practices to address and manage inflammatory bowel disease (IBD) are inefficient and the effect of the administered therapeutic cues is limited. The reasonable immune response or invasion should also be circumvented for successful clinical translation of engineered cues as highly efficient and robust bioactive entities. In this context, research is underway worldwide, and researchers have redirected or regained their interests in valorizing the naturally occurring biological entities/resources, for example, algal biome so-called “treasure of untouched or underexploited sources”. Algal biome from the marine environment is an immense source of excellence that has also been demonstrated as a source of bioactive compounds with unique chemical, structural, and functional features. Moreover, the molecular modeling and synthesis of new drugs based on marine-derived therapeutic and biological cues can show greater efficacy and specificity for the therapeutics. Herein, an effort has been made to cover the existing literature gap on the exploitation of naturally occurring biological entities/resources to address and efficiently manage IBD. Following a brief background study, a focus was given to design characteristics, performance evaluation of engineered cues, and point-of-care IBD therapeutics of diverse bioactive compounds from the algal biome. Noteworthy potentialities of marine-derived biologically active compounds have also been spotlighted to underlying the impact role of bio-active elements with the related pathways. The current review is also focused on the applied standpoint and clinical translation of marine-derived bioactive compounds. Furthermore, a detailed overview of clinical applications and future perspectives are also given in this review.


1994 ◽  
Vol 13 (1) ◽  
pp. 85-92 ◽  
Author(s):  
G. Ruhenstroth-Bauer ◽  
G. Hoffmann ◽  
S. Vogl ◽  
H. Baumer ◽  
R. Kulzer ◽  
...  

2020 ◽  
Vol 100 (4) ◽  
pp. 60-74
Author(s):  
А.А. Bakibaev ◽  
◽  
М.Zh. Sadvakassova ◽  
V.S. Malkov ◽  
R.Sh. Еrkasov ◽  
...  

A wide variety of acyclic ureas comprising alkyl, arylalkyl, acyl, and aryl functional groups are investigated by nuclear magnetic resonance spectroscopy. In general, spectral characteristics of more than 130 substances based on acyclic ureas dissolved in deuterated dimethyl sulfoxide at room temperature are studied. The re-sults obtained based on the studies of 1H and 13C NMR spectra of urea and its N-alkyl-, N-arylalkyl-, N-aryl- and 1,3-diaryl derivatives are presented, and the effect of these functional groups on the chemical shifts in carbonyl and amide moieties in acyclic urea derivatives is discussed. An introduction of any type of substitu-ent (electron-withdrawing or electron-donating) into urea molecule is stated to result in a strong upfield shift in 13C NMR spectra relatively to unsubstituted urea. A strong sensitivity of NH protons to the presence of acyl and aryl groups in nuclear magnetic resonance spectra is pointed out. In some cases, qualitative depend-encies between the chemical shifts in the NMR spectra and the structure of the studied acyclic ureas are re-vealed. A summary of the results on chemical shifts in the NMR spectra of the investigated substances allows determining the ranges of chemical shift variations of the key protons and carbon atoms in acyclic ureas. The literature describing the synthesis procedures are provided. The results obtained significantly expand the methods of reliable identification of biologically active acyclic ureas and their metabolites that makes it promising to use NMR spectroscopy both in biochemistry and in clinical practice.


1978 ◽  
Vol 75 (1) ◽  
pp. 123-132
Author(s):  
ANN E. KAMMER ◽  
D. L. DAHLMAN ◽  
GERALD A. ROSENTHAL

Injection of L-canavanine, a naturally occurring arginine analogue, and of its metabolic derivative, L-canaline, induced almost continuous motor activity in adult tobacco hornworms, Manduca sexta (L.). Initially the moths flew normally, but after a time interval that depended both on the amino acid and on the dose (1-l45/μmol/g fresh weight) the moths became disorientated and muscle activity was less patterned. Canaline produced its initial effects 12-30 min after injection, whereas activity in response to canavanine began after a delay of 1-2 h. Canaline (derived from canavanine by an arginase-mediated hydrolytic cleavage) is probably the biologically active factor. Canaline did not affect axonal conduction of action potentials nor the activity of mechanoreceptors on the forewing. Canaline (22μmol/g fresh weight) prolonged the postsynaptic potential of flight muscle fibres, but after 20-40 min. the electrical activity of muscle fibres was normal. The results show that canaline alters the activity of the central nervous system of adult M. sexta, but its mode of action is unknown.


2020 ◽  
Vol 21 (14) ◽  
pp. 5127
Author(s):  
Olga A. Krasheninina ◽  
Veniamin S. Fishman ◽  
Alexander A. Lomzov ◽  
Alexey V. Ustinov ◽  
Alya G. Venyaminova

We report a universal straightforward strategy for the chemical synthesis of modified oligoribonucleotides containing functional groups of different structures at the 2′ position of ribose. The on-column synthetic concept is based on the incorporation of two types of commercial nucleotide phosphoramidites containing orthogonal 2′-O-protecting groups, namely 2′-O-thiomorpholine-carbothioate (TC, as “permanent”) and 2′-O-tert-butyl(dimethyl)silyl (tBDMS, as “temporary”), to RNA during solid-phase synthesis. Subsequently, the support-bound RNA undergoes selective deprotection and follows postsynthetic 2′ functionalization of the naked hydroxyl group. This convenient method to tailor RNA, utilizing the advantages of solid phase approaches, gives an opportunity to introduce site-specifically a wide range of linkers and functional groups. By this strategy, a series of RNAs containing diverse 2′ functionalities were synthesized and studied with respect to their physicochemical properties.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 270
Author(s):  
Ilhem Saadouli ◽  
Imène Zendah El Euch ◽  
Emna Trabelsi ◽  
Amor Mosbah ◽  
Alaeddine Redissi ◽  
...  

Streptomyces is the most frequently described genus of Actinomycetes, a producer of biologically active secondary metabolites. Indeed, the Streptomyces species produces about 70% of antibiotics and 60% of antifungal molecules used in agriculture. Our study was carried out with the goal of isolating and identifying antimicrobial secondary metabolites from Streptomyces misionensis V16R3Y1 isolated from the date palm rhizosphere (southern Tunisia). This strain presented a broad range of antifungal activity against Fusarium oxysporum, Aspergillus flavus, Penicillium expansum, Aspergillus niger, Candida albicans, Candida metapsilosis, and Candida parapsilosis and antibacterial activity against human pathogenic bacteria, including Escherichia fergusonii, Staphylococcus aureus, Salmonella enterica, Enterococcus faecalis, Bacillus cereus and Pseudomonas aeruginosa. The purification procedure entailed ethyl acetate extract, silica gel column, and thin layer chromatography. Based on 1H NMR metabolomic procedure application, also supported by the GC-MS analysis, cyclic dipeptide (l-Leucyl-l-Proline) was identified as the major compound in the bioactive fraction. In order to confirm the identity of the active compound and to have a large quantity thereof, a chemical synthesis of the cyclic dipeptide was performed. The synthetic compound was obtained with a very good yield (50%) and presented almost the same effect compared to the extracted fraction. This study indicates for the first time that Streptomyces misionensis V16R3Y1 exhibits a broad spectrum of antimicrobial activities, produced cyclic dipeptide (l-Leucyl-l-Proline) and might have potential use as a natural agent for pharmaceutical and agri-food applications.


Sign in / Sign up

Export Citation Format

Share Document