Variable and multiple expression of Protease Nexin-1 during mouse organogenesis and nervous system development

Development ◽  
1993 ◽  
Vol 119 (4) ◽  
pp. 1119-1134 ◽  
Author(s):  
I.M. Mansuy ◽  
H. van der Putten ◽  
P. Schmid ◽  
M. Meins ◽  
F.M. Botteri ◽  
...  

Protease Nexin-1 (PN-1) also known as Glia-Derived Nexin (GDN) inhibits the activity of several serine proteases including thrombin, tissue (tPA)- and urokinase (uPA)-type plasminogen activators. These and other serine proteases seem to play roles in development and tissue homeostasis. To gain insight into where and when PN-1 might counteract serine protease activities in vivo, we examined its mRNA and protein expression in the mouse embryo, postnatal developing nervous system and adult tissues. These analyses revealed distinct temporal and spatial PN-1 expression patterns in developing cartilage, lung, skin, urogenital tract, and central and peripheral nervous system. In the embryonic spinal cord, PN-1 expression occurs in cells lining the neural canal that are different from the cells previously shown to express tPA. In the developing postnatal brain, PN-1 expression appears transiently in many neuronal cell populations. These findings suggest a role for PN-1 in the maturation of the central nervous system, a phase that is accompanied by the appearance of different forms of PN-1. In adults, few distinct neuronal cell populations like pyramidal cells of the layer V in the neocortex retained detectable levels of PN-1 expression. Also, mRNA and protein levels did not correspond in adult spleen and muscle tissues. The widespread and complex regulation of PN-1 expression during embryonic development and, in particular, in the early postnatal nervous system as well as in adult tissues suggests multiple roles for this serine protease inhibitor in organogenesis and tissue homeostasis.

1996 ◽  
Vol 109 (7) ◽  
pp. 1749-1757 ◽  
Author(s):  
N. Soussi-Yanicostas ◽  
J.P. Hardelin ◽  
M.M. Arroyo-Jimenez ◽  
O. Ardouin ◽  
R. Legouis ◽  
...  

The KAL gene is responsible for the X-chromosome linked form of Kallmann's syndrome in humans. Upon transfection of CHO cells with a human KAL cDNA, the corresponding encoded protein, KALc, was produced. This protein is N-glycosylated, secreted in the cell culture medium, and is localized at the cell surface. Several lines of evidence indicate that heparan-sulfate chains of proteoglycan(s) are involved in the binding of KALc to the cell membrane. Polyclonal and monoclonal antibodies to the purified KALc were generated. They allowed us to detect and characterize the protein encoded by the KAL gene in the chicken central nervous system at late stages of embryonic development. This protein is synthesized by definite neuronal cell populations including Purkinje cells in the cerebellum, mitral cells in the olfactory bulbs and several subpopulations in the optic tectum and the striatum. The protein, with an approximate molecular mass of 100 kDa, was named anosmin-1 in reference to the deficiency of the sense of smell which characterizes the human disease. Anosmin-1 is likely to be an extracellular matrix component. Since heparin treatment of cell membrane fractions from cerebellum and tectum resulted in the release of the protein, we suggest that one or several heparan-sulfate proteoglycans are involved in the binding of anosmin-1 to the membranes in vivo.


2006 ◽  
Vol 52 (6) ◽  
pp. 550-559 ◽  
Author(s):  
J Xu ◽  
D Baldwin ◽  
C Kindrachuk ◽  
D D Hegedus

The protease activity of a Zoophthora radicans strain that was highly infective toward Pieris brassicae (cabbage butterfly) larvae was compared with that of isogenic strains that were adapted to Plutella xylostella (diamondback moth) larvae through serial passage. All strains produced three distinct serine proteases ranging in size from 25 to 37 kDa; however, the original strain from P. brassicae also produced large amounts of an approximately 46 kDa metalloprotease. Subsequently, a cDNA encoding a 43 kDa (mature enzyme) zinc-dependent metalloprotease, ZrMEP1, was isolated from the original fungal strain and most likely corresponds to the 46 kDa protease observed with in-gel assays. ZrMEP1 possessed characteristics of both the fungalysin and thermolysin metalloprotease families found in some pulmonary and dermal pathogens. This is the first report of this type of metalloprotease from an entomo pathogenic fungus. A cDNA encoding a trypsin-like serine protease, ZrSP1, was also identified and was most similar to a serine protease from the plant pathogen Verticillium dahliae. In artificial media, ZrMEP1 and ZrSP1 were found to be differentially responsive to gelatin and catabolite repression in the fungal strains adapted to P. brassicae and P. xylostella, but their expression patterns within infected larvae were the same. It appears that while these proteases likely play a role in the infection process, they may not be major host specificity determinants.Key words: Zoophthora radicans, metalloprotease, serine protease, pathogenesis, entomopathogen, host specificity.


Development ◽  
1992 ◽  
Vol 115 (1) ◽  
pp. 117-122 ◽  
Author(s):  
J. Manson ◽  
J.D. West ◽  
V. Thomson ◽  
P. McBride ◽  
M.H. Kaufman ◽  
...  

The neural membrane glycoprotein PrP (prion protein) has a key role in the development of scrapie and related neurodegenerative diseases. During pathogenesis, PrP accumulates in and around cells of the brain from which it can be isolated in a disease-specific, protease-resistant form. Although the involvement of PrP in the pathology of these diseases has long been known, the normal function of PrP remains unknown. Previous studies have shown that the PrP gene is expressed tissue specifically in adult animals, the highest levels in the brain, with intermediate levels in heart and lung and low levels in spleen. Prenatally, PrP mRNA has been detected in the brain of rat and hamster just prior to birth. In this study we have examined the expression of the PrP gene during mouse embryonic development by in situ hybridisation and observed dramatic regional and temporal gene expression in the embryo. Transcripts were detected in developing brain and spinal cord by 13.5 days. In addition, PrP gene expression was detected in the peripheral nervous system, in ganglia and nerve trunks of the sympathetic nervous system and neural cell populations of sensory organs. Expression of the PrP gene was not limited to neuronal cells, but was also detected in specific non-neuronal cell populations of the 13.5 and 16.5 day embryos and in extra-embryonic tissues from 6.5 days. This cell-specific expression suggests a pleiotropic role for PrP during development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sydney Fearnley ◽  
Reesha Raja ◽  
Jean-François Cloutier

AbstractDifferential expression of cell adhesion molecules in neuronal populations is one of the many mechanisms promoting the formation of functional neural circuits in the developing nervous system. The IgLON family consists of five cell surface immunoglobulin proteins that have been associated with various developmental disorders, such as autism spectrum disorder, schizophrenia, and major depressive disorder. However, there is still limited and fragmented information about their patterns of expression in certain regions of the developing nervous system and how their expression contributes to their function. Utilizing an in situ hybridization approach, we have analyzed the spatiotemporal expression of all IgLON family members in the developing mouse brain, spinal cord, eye, olfactory epithelium, and vomeronasal organ. At one prenatal (E16) and two postnatal (P0 and P15) ages, we show that each IgLON displays distinct expression patterns in the olfactory system, cerebral cortex, midbrain, cerebellum, spinal cord, and eye, indicating that they likely contribute to the wiring of specific neuronal circuitry. These analyses will inform future functional studies aimed at identifying additional roles for these proteins in nervous system development.


2021 ◽  
Author(s):  
Elizabeth Vincent ◽  
Sumantra Chatterjee ◽  
Gabrielle H Cannon ◽  
Dallas Auer ◽  
Holly Ross ◽  
...  

The receptor tyrosine kinase gene RET plays a critical role in the fate specification of enteric neural crest cells (ENCCs) during enteric nervous system (ENS) development. Ret loss of function (LoF) alleles are associated with Hirschsprung disease (HSCR), which is marked by aganglionosis of the gastrointestinal (GI) tract. ENCCs invade the developing GI tract, proliferate, migrate caudally, and differentiate into all of the major ENS cell types. Although the major phenotypic consequences, and the underlying transcriptional changes from Ret LoF in the developing ENS have been described, its cell type and state-specific effects are unknown. Consequently, we performed single-cell RNA sequencing (scRNA-seq) on an enriched population of ENCCs isolated from the developing GI tract of Ret null heterozygous and homozygous mouse embryos at embryonic day (E)12.5 and E14.5. We demonstrate four significant findings: (1) Ret-expressing ENCCs are a heterogeneous population composed of ENS progenitors as well as glial and neuronal committed cells; (2) neurons committed to a predominantly inhibitory motor neuron developmental trajectory are not produced under Ret LoF, leaving behind a mostly excitatory motor neuron developmental program; (3) HSCR-associated and Ret gene regulatory network genes exhibit distinct expression patterns across Ret-expressing ENCC cells with their expression impacted by Ret LoF; and (4) Ret deficiency leads to precocious differentiation and reduction in the number of proliferating ENS precursors. Our results support a model in which Ret contributes to multiple distinct cellular phenotypes and that Ret LoF contributes to GI aganglionosis in multiple independent ways.


2014 ◽  
Vol 95 (10) ◽  
pp. 2192-2203 ◽  
Author(s):  
Yungang Lan ◽  
Kui Zhao ◽  
Jiakuan Zhao ◽  
Xiaoling Lv ◽  
Gaili Wang ◽  
...  

Porcine haemagglutinating encephalomyelitis virus (PHEV) is the main causative agent of porcine coronavirus-associated disease, which is characterized by encephalomyelitis and involves the central nervous system. Little is known about the molecular mechanisms of brain injury caused by PHEV. To gain insight into the interaction between the virus and host cells, changes in global gene expression in the cerebral cortex of PHEV- or mock-infected mice were investigated using DNA microarray analysis and quantitative real-time PCR. The results of the microarray analysis showed that 365 genes on day 3 post-infection (p.i.) and 781 genes on day 5 p.i. were differentially expressed in response to PHEV infection in the cerebral cortex. The upregulated genes were mainly involved in immune system processes, antigen processing and presentation, the Jak–STAT signalling pathway, the RIG-I-like receptor signalling pathway, Toll-like receptor signalling and apoptosis-related proteases. Significantly downregulated genes were mainly involved in nervous-system development, synaptic transmission, neuron-projection development, the transmission of nerve impulses and negative regulation of glial cell differentiation. The differential expression of these genes suggests a strong antiviral host response, but may also contribute to the pathogenesis of PHEV resulting in encephalomyelitis.


2020 ◽  
Vol 10 (6) ◽  
pp. 1949-1962 ◽  
Author(s):  
Elyse L. Christensen ◽  
Alexandra Beasley ◽  
Jessica Radchuk ◽  
Zachery E. Mielko ◽  
Elicia Preston ◽  
...  

Proper nervous system development is required for an organism’s survival and function. Defects in neurogenesis have been linked to neurodevelopmental disorders such as schizophrenia and autism. Understanding the gene regulatory networks that orchestrate neural development, specifically cascades of proneural transcription factors, can better elucidate which genes are most important during early neurogenesis. Neurogenins are a family of deeply conserved factors shown to be both necessary and sufficient for the development of neural subtypes. However, the immediate downstream targets of neurogenin are not well characterized. The objective of this study was to further elucidate the role of ngn-1/neurogenin in nervous system development and to identify its downstream transcriptional targets, using the nematode Caenorhabditis elegans as a model for this work. We found that ngn-1 is required for axon outgrowth, nerve ring architecture, and neuronal cell fate specification. We also showed that ngn-1 may have roles in neuroblast migration and epithelial integrity during embryonic development. Using RNA sequencing and comparative transcriptome analysis, we identified eight transcription factors (hlh-34/NPAS1, unc-42/PROP1, ceh-17/PHOX2A, lim-4/LHX6, fax-1/NR2E3, lin-11/LHX1, tlp-1/ZNF503, and nhr-23/RORB) whose transcription is activated, either directly or indirectly, by ngn-1. Our results show that ngn-1 has a role in transcribing known terminal regulators that establish and maintain cell fate of differentiated neural subtypes and confirms that ngn-1 functions as a proneural transcription factor in C. elegans neurogenesis.


Insects ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 378 ◽  
Author(s):  
Jia-min Wu ◽  
Rong-er Zheng ◽  
Rui-juan Zhang ◽  
Jin-liang Ji ◽  
Xiao-ping Yu ◽  
...  

Clip domain serine proteases play vital roles in various innate immune functions and in embryonic development. Nilaparvata lugens proclotting enzymes (NlPCEs) belong to this protease family. NlPCE1 was reported to be involved in innate immunity, whereas the role of other NlPCEs is unclear. In the present study, N. lugens proclotting enzyme-3 (NlPCE3) was cloned and characterized. NlPCE3 contains a signal peptide, a clip domain, and a trypsin-like serine protease domain. NlPCE3 was expressed in all tissues examined (gut, fat body, and ovary), and at all developmental stages. Immunofluorescence staining showed that NlPCE3 was mainly expressed in the cytoplasm and cytomembrane of follicular cells. Double stranded NlPCE3 RNA interference clearly inhibited the expression of NlPCE3, resulting in abnormal egg formation and obstruction of ovulation. These results indicate that NlPCE3 plays an important role in egg production in N. lugens.


Sign in / Sign up

Export Citation Format

Share Document