Effect of the addition of nitrogen sources to cassava fiber and carbon-to-nitrogen ratios on Agaricus brasiliensis growth

2007 ◽  
Vol 53 (1) ◽  
pp. 139-143 ◽  
Author(s):  
T R.D Mantovani ◽  
G A Linde ◽  
N B Colauto

The same substratum formulation to grow Agaricus bisporus has been used to grow Agaricus brasiliensis since its culture started in Brazil. Despite being different species, many of the same rules have been used for composting or axenic cultivation when it comes to nitrogen content and source in the substrate. The aim of this study was to verify the mycelial growth of A. brasiliensis in different ammonium sulfate and (or) urea concentrations added to cassava fiber and different carbon-to-nitrogen (C:N) ratios to increase the efficiency of axenic cultivation. Two nitrogen sources (urea and (or) ammonium sulfate) added to cassava fiber were tested for the in vitro mycelial growth in different C:N ratios (ranging from 2.5:l to 50:l) in the dark at 28 °C. The radial mycelial growth was measured after 8 days of growth and recorded photographically at the end of the experiment. Nitrogen from urea enhanced fungal growth better than ammonium sulfate or any mixture of nitrogen. The best C:N ratios for fungal growth were from 10:l to 50:l; C:N ratios below 10:l inhibited fungal growth.Key words: Agaricus brasiliensis, Agaricus blazei, Agaricus subrufescens, nitrogen, C:N ratio.

Author(s):  
Kevison Romulo da Silva França ◽  
Flavia Mota de Figueredo Alves ◽  
Tiago Silva Lima ◽  
Alda Leaby dos Santos Xavier ◽  
Plínio Tércio Medeiros de Azevedo ◽  
...  

This study evaluates the in vitro effects of Lippia gracilis essential oil on the mycelial growth of phytopathogenic fungi. Experiments were carried out using a completely randomized design to assess the effects of eight treatments. Five replicates were evaluated for each experimental group. The essential oil was incorporated into the potato dextrose culture medium and poured into Petri dishes. Treatments were comprised of different concentrations of the oil (0.0125, 0.025, 0.05, 0.1, and 0.2%), a negative control (0.0%), and two positive controls (commercial fungicides). The plates were inoculated with fungi including Colletotrichum gloeosporioides, C. musae, C. fructicola, C. asianum, Alternaria alternata, A. brassicicola, Fusarium solani, F. oxysporum f. sp. cubense, and Lasiodiplodia theobromae and were incubated for seven days at 27 ± 2°C. The following variables were measured to verify the differences observed among treatments: percentage of mycelial growth inhibition and index of mycelial growth speed. All concentrations of L. gracilis oil inhibited the mycelial growth of the fungal species evaluated. The complete inhibition was observed between concentrations of 0.0125 and 0.1%. Treatment with oil inhibited fungal growth with similar, or even greater, efficiency than commercial fungicides.. We recommend the development of in vivo tests to verify whether L. gracilis essential oil can protect against fungal disease in live plants.


2018 ◽  
Vol 30 (1) ◽  
pp. 75 ◽  
Author(s):  
Gul B. Poussio ◽  
Manzoor A. Abro ◽  
Jamal U. D. Hajano ◽  
Muhammad I. Khaskheli ◽  
Khalid I. Rajput ◽  
...  

Fusarium oxysporum f.sp. lycopersici (FOL) is a highly destructive fungal pathogen of tomato crop causing wilt disease which may reduce 10 to 90% yield. In Pakistan, tomato is widely grown in Sindh province, major territories are district Hyderabad, Tando Allahyar and Mirpurkhas. Thus, surveys of these territories were conducted to record intensity of the disease and confirm etiology. Furthermore, potential of different botanical pesticides and commercially available fungicides were tested to inhibit mycelial growth of the causal fungus. The experiment was laid down with complete randomized block design with three replications. The results showed that the disease was occurring in all locations with the range of 8-47 % incidence. F. oxysporum f.sp. lycopersici was predominantly isolated from the collected disease sample during survey and pathogenic nature of the fungus was tested on the tomato Golo variety through soil drenching method. The disease incidence of 30 and 42 % (72 % as total) was recorded in inoculated tomato plants at 20 and 40 DAI, respectively. Maximum (67 %) inhibition of the fungal growth was found by neem seed extracts at higher dose of 8 % concentration followed by 63 % with neem seeds and Eucalyptus at 6 and 8 %, respectively. Alternatively, the Nativo 75 WG fungicide was found most effective in reducing the redial mycelial growth of target fungus followed by Topsin-M at 1000 ppm where as Aliette and Melodedue fungicides were found least effective under in-vitro conditions.


2018 ◽  
Vol 7 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Mostafa H. Mostafa ◽  
Maha H. Mohamed

The effect of different nitrogen sources (glucosamine sulfate, ammonium sulfate, aspartic acid, phenylalanine and peptone) in comparison to sodium nitrate, the major nitrogen compound in basal agar Czapek’s synthetic medium growth were studied on the linear growth of Rhizoctonia solani and its pathogenicity on faba bean germinated seeds. Ammonium sulfate exhibited faster liner growth and showed the same effect as the basal medium with sodium nitrate while glucosamine sulfate showed less growth rate compared with sodium nitrate. Glucosamine sulfate and ammonium sulfate showed a significant reduction in number of infection cushions which led to significant decrease of disease index in vitro. Under greenhouse conditions, glucosamine sulfate or peptone as a sole nitrogen sources in food requirements of Rhizoctonia solani inoculum depressed the virulence of the fungus. The effect of different amounts of glucosamine sulfate was determined on fungal growth rate, infection cushions, disease index in vitro and polyphenol oxidase activity. Increasing amount of glucosamine sulfate showed significant reduction of growth rate in comparison to the basal medium with sodium nitrate. All seeds subjected to R. solani grown on different amount of glucosamine sulfate showed the lower number of infection cushions, disease index and polyphenol oxidase activity compared with sodium nitrate. Under greenhouse conditions, disease index showed a significantly decreased effect when glucosamine sulfate used as soil applications and showed better effect on shoot weight and root weight compared with control plants treated with sodium nitrate. Our study proposes that glucosamine sulfate may act as controlling factor of pathogenicity genes of R. solani


2013 ◽  
Vol 1 ◽  
pp. 26-31 ◽  
Author(s):  
Imdramani Bhagat

Sclerotial blight of tea (Camellia sinensis L.) caused by Sclerotium rolfsii Sacc. is one of the destructive diseases in tea growing areas of the world. In the present investigation, an attempt was made to know the optimum conditions for the mycelial growth of S. rolfsii. Factors influencing mycelial growth of S. rolfsii were studied with special reference to their growth in different media, variable pH and variable sources of carbon (viz., 6 types) as well as organic (viz., 4 types) and inorganic (viz., 4 types) nitrogen sources. Maximum growth of pathogen occurred after 8 days of inoculation at pH 6. Dextrose was the most effective carbon source and yeast extract (organic source) was found most optimum for growth of S. rolfsii. Organic nitrogen sources were found to be better than inorganic nitrogen sources. DOI: http://dx.doi.org/10.3126/njbs.v1i0.7466 Nepalese Journal of Biosciences 1: 26-31 (2011)


2016 ◽  
Vol 79 (9) ◽  
pp. 1508-1516 ◽  
Author(s):  
MICHELLE F. TERRA ◽  
NATHASHA de A. LIRA ◽  
FABIANA R. F. PASSAMANI ◽  
WILDER DOUGLAS SANTIAGO ◽  
MARIA das GRAÇAS CARDOSO ◽  
...  

ABSTRACT Prevention in the field of mycotoxin-producing fungi is the most effective strategy for controlling the presence of mycotoxins in foods. Chemical fungicides are widely used to protect crops, so their implications on mycotoxin production need to be considered. Therefore, the aim of this study was to evaluate the effect in vitro and on grapes of five fungicides commonly used on grape cultures in Brazil on Aspergillus carbonarius growth and ochratoxin A (OTA) production. At the doses recommended by manufacturers, most fungicides significantly reduced A. carbonarius growth and OTA production in vitro, whereas this effect was influenced by the type of fungicide, dose, and temperature. Temperature was the main factor that influenced the effectiveness of fungicides. In general, at 15°C, fungicides showed the greatest reduction on fungal growth and OTA production. Fungicide effect on grapes was different to that on a semisynthetic grape medium. All fungicide doses were not effective at controlling A. carbonarius in grapes. Thus, the direct effect of fungicides on grapes must be studied to obtain a better approximation of field conditions. The results indicate that the use of fungicides at the doses recommended by manufacturers is better than the application at low doses. This study showed that at the lowest doses, where fungal growth is not inhibited, fungicides positively stimulate OTA production.


Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1254-1260 ◽  
Author(s):  
Erin Lonergan ◽  
Julie Pasche ◽  
Linnea Skoglund ◽  
Mary Burrows

Management of Ascochyta blight in pea, lentil, and chickpea relies on repeated fungicide applications, which has led to development of fungicide resistance and disease control failures in some systems. In vitro assays were conducted to determine baseline fungicide sensitivity in Mycosphaerella pinodes (Ascochyta pinodes), A. lentis, and A. rabiei populations to the demethylation-inhibiting fungicide prothioconazole and the succinate dehydrogenase-inhibiting fungicides boscalid and fluxapyroxad by determining the effective concentration at which 50% of germination or fungal growth was inhibited (EC50). Mean boscalid EC50 values from conidial germination assays were 0.669, 0.639, and 0.171 μg/ml and from mycelial growth assays were 0.258, 0.791, and 0.443 μg/ml for M. pinodes, A. lentis, and A. rabiei, respectively. Mean fluxapyroxad EC50 values were 0.050, 0.763, and 0.057 μg/ml for M. pinodes, A. lentis, and A. rabiei, respectively. Mean baseline EC50 values for prothioconazole with mycelial growth were 0.541, 0.604, and 0.283 μg/ml for M. pinodes, A. lentis, and A. rabiei, respectively. A single discriminatory fungicide concentration of 1 μg/ml was selected for all species. Established sensitivity profiles and discriminatory concentrations will be used to monitor sensitivity shifts in populations of Ascochyta spp. and to make effective disease management recommendations.


2017 ◽  
Vol 9 (4) ◽  
pp. 1916-1920
Author(s):  
Vipin Kumar ◽  
V.P. Chaudhary ◽  
Dharmendra Kumar ◽  
Ajay Kumar ◽  
Sushma Sagar ◽  
...  

Among the fungal diseases, sheath blight, caused by multinucleate Rhizoctoniasolani Kuhn (teleomorph: Thanatephorus cucumeris Donk), a ubiquitous pathogen, is an important fungal disease of rice ranking only after blast and often rivalling it. The potential losses due to sheath blight alone in India has been up to 51.3%. In this study an attempt was made to investigate the antifungal efficacy of botanicals viz., neem (Azadirachtaindica), tulsi (Ocimum sanctum), garlic (Allium sativum), onion (Allium cepa), ginger (Zingiberofficinale) and various fungicides namely mancozeb, propiconazole, hexaconazole, carbendazim, and copper oxychlorideagainst Rhizoctoniasolani in vitro by poison food technique. R. solani was allowed to grow at 5%, 10% concentrations of botanicals and at 200, 500, 1000ppm of fungicides amended potato dextrose agar (PDA) medium. The effect of botanicals and fungicides on mycelial growth inhibition was recorded after 36, 48 and 72 post hrs inoculation (phi). It was observed that bulb extract of Allium sativum and rhizome extract of Zingier officinal suppressed the mycelial growth (80.19 and 76.32, respectively) @ 10% followed by leaf extract of Azadirachtaindica (72.78 %) after 72 phi. Among the fungicides, the complete fungal growth inhibition was observed in propiconazole and carbendazim fungicides amended medium.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
B. Rex ◽  
G. Rajasekar

Early blight of tomato (Solanum lycopersicum L.) incited by Alternaria solani is highly destructive causing yield loss up to 78 per cent. The fungus was tested with different media along with the host extract and different nutrient sources for their growth and development in in vitro. Twelve different media were tested on the growth of A. solani, among them potato dextrose agar + host leaf extract recorded maximum radial mycelial growth of A. solani (89.57mm) and potato dextrose broth + leaf extract has maximum mycelial dry weight (613mg). Six carbon and nitrogen sources amended media were tested. Among carbon sources, glucose recorded maximum radial mycelial growth (74.65mm) and mycelia dry weight (709.17mg). Among the nitrogen sources, ammonium nitrate has the enhanced the radial mycelail growth (84.56 mm) and high mycelial dry weigh (654.27mg). This study will be helpful for further investigations on the physiology of the fungus and management of the disease.


2020 ◽  
Vol 6 (3) ◽  
pp. 66
Author(s):  
ESTHER M. ADHI ◽  
SUPRIADI SUPRIADI ◽  
S. RAHAYUNINGSIH ◽  
D. KILIN ◽  
NURI KARYANI

<p><strong>Pestalotiopsis desseminata on cashew: its biology and interaction with Helopeltis antonii</strong></p><p>Pestalotiopsis desseminata is one of pathogens causing leaf spots. die-back of shoots and inflorescence of cashew plant. It is assumed there is an interaction between the attack of Helopeltis antonii and the fungus in Ihe ield so that the damage becomes more devastating. The objectives of (his research were to investigate several aspects of fungal biology (pathogenicity, mycelial growth, acervuli production, sensitivity to fungicides) and its interaction with //. antonii. The esearch was carried out from April 1999 to March 2000 at the laboratory and green house of Pest and Disease Department Research Institute for Spice and Medicinal Crops, Bogor. /' desseminata was diectly isolated from cashew leaves. Pathogenicity test of P. desseminata isolate was conducted on cashew seedlings. The fungal growth and fungicide effects were carried out in vitro on agar medium. The interaction between P. desseminata and H. antonii was examined by inoculating the fungus and insect, either individually or in combination, on cashew seedlings. The results showed that P. desseminata isolate fomis black spherical acervuli containing oblongs conidia with 5 cells, and the outermost cell has 3 flagellate. Acervuli could only be produced on the cultue illuminated continuously by 600 lux translucent lamp. Pathogenicity test of several isolates of /' desseminata on cashew seedlings caused spherical leaf spot symptom, individually or coalesced as bigger leaf spots. In vitro fungal mycelia growth could be suppressed by several fungicides, including bcnomyl 50% (I ppm) and Uiiopanate-mcthyl 70% (10 ppm) Combining inoculation between P. desseminata and //. antonii resulted in moe severe (devastating) die-back compared with individually inoculated.</p>


Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 99-102 ◽  
Author(s):  
J. A. LaMondia

Calonectria pseudonaviculata causes leaf spot and stem lesions resulting in defoliation and dieback of boxwood. Fungicides representing 20 different active ingredients from 13 different Fungicide Resistance Action Committee groups were evaluated for their effects on conidial germination and mycelial growth using in vitro assays, and the concentration that suppressed fungal growth to 15% of that on unamended media (EC85) values were determined. A number of fungicides strongly inhibited mycelial growth of C. pseudonaviculata. Four demethylation inhibitor fungicides had EC85 values of 1.2 μg a.i./ml or less. Thiophanate-methyl, fludioxonil, pyraclostrobin, trifloxystrobin, kresoxim-methyl, mancozeb, and chlorothalonil also had activity against mycelial growth. Fludioxonil + cyprodinil had a lower EC85 than the same rate of fludioxonil alone, suggesting that cyprodinil had activity against mycelial growth. Fungicides that inhibited C. pseudonaviculata conidial germination include pyraclostrobin, trifloxystrobin, and kresoxim-methyl as well as fludioxonil, mancozeb, chlorothalonil, and boscalid. Quinoxyfen, etridiazole, fenhexamid, hymexazol, famoxadone, and cymoxanil did not inhibit either C. pseudonaviculata conidial germination or mycelial growth. In comparison with values found in the literature, EC50 values for kresoxim-methyl were up to 10 times higher than reported previously, suggesting that fungicide insensitivity may have developed. Protectant fungicides with activity against conidial germination and systemic fungicides with activity against mycelial growth, such as those identified here, may be complementary to achieve the high levels of pathogen management required for control of this disease. In addition, multiple fungicide active ingredients from different mode-of-action groups used in mixtures or over time may also act to slow selection for fungicide insensitivity.


Sign in / Sign up

Export Citation Format

Share Document