Environmental and successional relationships of the forest communities of the Porcupine River drainage, interior Alaska

1983 ◽  
Vol 13 (5) ◽  
pp. 721-728 ◽  
Author(s):  
J. Yarie

The structure and function of taiga ecosystems over a 3 600 000 ha area of northeastern interior Alaska was shown to be consistent with a hypothesis relating vegetative structure and dynamics to site nutrient status and soil temperature. Ordination of modal community descriptions and correlation of the ordination values with environmental parameters indicated that controls of vegetative structure and function found for the Fairbanks area, where the hypothesis was developed, can be applied to the interior Alaska taiga. High productivity sites were associated with warmer soil temperatures, smaller accumulation of soil organic layers, and lower C:N ratios. Lower productivity sites were associated with the opposite trends. Black spruce (Piceamariana (Mill.) B.S.P.) generally dominated the less productive sites, while white spruce (Piceaglauca (Moench) Voss) and hardwoods occupied the more productive sites. The successional trends described for other areas of interior Alaska appear to be valid for this remote study area.

1981 ◽  
Vol 11 (2) ◽  
pp. 259-274 ◽  
Author(s):  
Keith Van Cleve ◽  
Richard Barney ◽  
Robert Schlentner

Selected indices of structure and function were used to evaluate the effect of differing soil thermal regimes on soil-permafrost-dominated (muskeg) and permafrost-free (north-slope) black spruce ecosystems in interior Alaska. The poorly drained, permafrost site displayed cooler soil temperatures and higher soil moisture content than were encountered on the well-drained north slope. Mineral soil nutrient pools generally were largest on the permafrost site. However, low soil temperature acted as a negative feedback control, suppressing soil biological activity, nutrient mineralization, and tree primary production to lower levels on the soil-permafrost-dominated site as compared with the permafrost-free site. Forty percent larger accumulation of tree biomass and 80% greater annual tree productivity occurred on the warmer site.


2011 ◽  
Vol 142 ◽  
pp. 247-251
Author(s):  
Rui Li Li ◽  
Guo Yu Qiu

Spartina alternifloracan be widely used for fodder, sewage treatment and as a substantial source of bioactive material. As an invader, it strongly disturbs the structure and function of native ecosystem in China. However, it is also a promising bio-energy source. We analyzed the potential ofS. alternifloraas a bio-energy source, including the superiority at both temporal and spatial scales, advantages in high photosynthetic efficiency and high productivity. Meanwhile, its exploitation for biofuel production was introduced.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


Author(s):  
Robert L. Ochs

By conventional electron microscopy, the formed elements of the nuclear interior include the nucleolus, chromatin, interchromatin granules, perichromatin granules, perichromatin fibrils, and various types of nuclear bodies (Figs. 1a-c). Of these structures, all have been reasonably well characterized structurally and functionally except for nuclear bodies. The most common types of nuclear bodies are simple nuclear bodies and coiled bodies (Figs. 1a,c). Since nuclear bodies are small in size (0.2-1.0 μm in diameter) and infrequent in number, they are often overlooked or simply not observed in any random thin section. The rat liver hepatocyte in Fig. 1b is a case in point. Historically, nuclear bodies are more prominent in hyperactive cells, they often occur in proximity to nucleoli (Fig. 1c), and sometimes they are observed to “bud off” from the nucleolar surface.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

Correlations between structure and function of biological macromolecules have been studied intensively for many years, mostly by indirect methods. High resolution electron microscopy is a unique tool which can provide such information directly by comparing the conformation of biopolymers in their biologically active and inactive state. We have correlated the structure and function of ribosomes, ribonucleoprotein particles which are the site of protein biosynthesis. 70S E. coli ribosomes, used in this experiment, are composed of two subunits - large (50S) and small (30S). The large subunit consists of 34 proteins and two different ribonucleic acid molecules. The small subunit contains 21 proteins and one RNA molecule. All proteins (with the exception of L7 and L12) are present in one copy per ribosome.This study deals with the changes in the fine structure of E. coli ribosomes depleted of proteins L7 and L12. These proteins are unique in many aspects.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


Sign in / Sign up

Export Citation Format

Share Document