The use of laboratory measurements to predict nitrogen mineralization and nitrification in Pinus radiata plantations after harvesting

1998 ◽  
Vol 28 (8) ◽  
pp. 1213-1221 ◽  
Author(s):  
J Clive Carlyle ◽  
EK Sadanandan Nambiar ◽  
Mark W Bligh

We tested whether laboratory estimates of net N mineralization and nitrification (subsequently termed N mineralization and nitrification) could be used to predict these processes in the field after harvesting nine Pinus radiata D. Don. plantations. Laboratory rates of N mineralization and nitrification were measured by aerobic incubation (20°C) of intact cores. Annual rates of these processes in the field were measured using a sequential coring procedure. Rates of N mineralization in the laboratory were 1.1-6.6 and 0.019-0.525mg·kg-1·day-1 for forest floor and mineral soil, respectively (nitrification accounted for 6-71 and 8-93% of N mineralization). Annual N mineralization by forest floor in the field was 5.2-23.9kg·ha-1·year-1and was not correlated with N mineralized in the laboratory. Annual N mineralization in mineral soil in the field was 16-74kg·ha-1·year-1and was highly correlated (r2 = 0.97) with N mineralized in the laboratory. Annual nitrification in forest floor in the field ranged from 3 to 45% of annual N mineralization, and in mineral soil from 4 to 27%, both were correlated with relative nitrification measured in the laboratory.

1993 ◽  
Vol 23 (5) ◽  
pp. 970-978 ◽  
Author(s):  
K. Van Cleve ◽  
J. Yarie ◽  
R. Erickson ◽  
C.T. Dyrness

Nitrogen (N) mineralization and nitrification were compared among ecosystems representing a primary successional sequence on the Tanana River floodplain of interior Alaska. These processes displayed marked seasonality, were closely related to substrate chemistry, and reflected the impact of vegetation clearing. The highest rates of N mineralization were encountered in the June to July incubation periods, and rates generally declined during the remainder of the summer. The early season period (June to July) was the interval of most favorable litter and mineral soil temperature and most available energy supply for microbial mineralization of detrital materials. Minimal rates were encountered during the winter. Litter layer N mineralization rates were highest in the early-successional poplar–alder (Populusbalsamifera–Alnustenuifolia (Nutt.) stage and declined with advancing succession in poplar (Populusbalsamifera) and mature white spruce (Piceaglauca) (Moench) Voss) stands. The poplar–alder stage displayed the highest rate of nitrification. Nitrate constituted 98% of the mineralized N in early-successional poplar–alder forest floors but fell to 4 and 0% in poplar and white spruce forest floors, respectively. Nitrogen mineralization was closely related to significant increases in the lignin/N ratio across the sequence of vegetation types. The rate of surface mineral soil net N mineralization increased with succession in response to higher soil organic matter content. The range of average total seasonal net N mineralization (260–1600 mg N•m−2) for litter layer plus mineral soil among successional stages in this study was generally lower than the 1200–8400 mg N•m−2 reported by investigators for other studies in temperate latitudes. Vegetation clearing increased the magnitude of temporal fluxes as well as total annual mineral N production. The most consistent increases were encountered in the poplar–alder vegetation type. The average seasonal total net N mineralization for forest floor plus mineral soil in this vegetation type increased from 1500 to 3264 mg N•m−2 as a result of clearing. Soil temperature declined with advancing succession and generally increased as a consequence of clearing. However, these changes were not as closely correlated with N mineralization as were the changes in substrate chemistry encountered across this successional sequence.


2000 ◽  
Vol 80 (3) ◽  
pp. 401-410 ◽  
Author(s):  
T. A. Forge ◽  
S. W. Simard

The trophic structure of nematode communities, lengths of fungal hyphae, and gross populations of protozoa and bacteria were compared between clearcuts and adjacent forests at three sites in the southern interior of British Columbia in 1996, 1997, and 1998. Total C and N, mineralizable N (anaerobic incubation), and N mineralised during aerobic incubations, were determined from the same soil samples used for biological assays. Net N mineralization did not differ between clearcuts and forests in 1997; in 1998 net N mineralization in the organic horizon was four times greater for forests than for clearcuts. Hyphal lengths and total microbial biomass were greater in forest soil than in clearcut soil. Bacterial abundance was greater in forest soil than in clearcut soil in 1996 only. The abundance of protozoa did not differ between clearcuts and forests. Fungivorous, omnivorous, and predacious nematodes were less abundant in clearcut soil than in forest soil. Bacterivorous nematodes were more abundant in the mineral soil of clearcuts than in forests in 1996, but did not differ between clearcuts and forests in any other combination of year and horizon. Net N mineralization was correlated with the ratio of bacterial biomass/fungal biomass (r = 0.72, 12 degrees of freedom), as well as the abundance of amoebae (r = 0.83), total nematodes (r = 0.80), bacterivorous nematodes (r = 0.74), and fungivorous nematodes (r = 0.83). Key words: Microfauna, nematode ecology, microbial biomass, clearcut harvesting, nitrogen mineralization


1990 ◽  
Vol 70 (1) ◽  
pp. 73-81 ◽  
Author(s):  
J. W. FYLES ◽  
I. H. FYLES ◽  
M. C. FELLER

Nitrogen mineralization in five forest floors of differing morphological characteristics was compared using a greenhouse plant bioassay and laboratory aerobic and anaerobic incubations. Forest floors dominated by F materials mineralized more N and had higher k values than those dominated by H. Plant N uptake in the bioassay was highly correlated with N mineralized during the laboratory incubations across all forest floors but was 50–80% lower than predictions based on first-order kinetic parameters derived from the aerobic incubation. The relationship between bioassay plant uptake and predicted N mineralization differed among forest floors, indicating that the effect of plants on dynamics of the mineralizable N pool differs among organic matter types. Differences in N mineralization characteristics between forest floor materials suggest that forest floor morphology may provide a basis for assessing site quality. Key words: Nitrogen, anaerobic mineralization, aerobic mineralization, bioassay, forest floor


2000 ◽  
Vol 30 (11) ◽  
pp. 1698-1706 ◽  
Author(s):  
K D Thomas ◽  
C E Prescott

Forest floor samples from a 25-year-old plantation of three tree species (Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.), and paper birch (Betula papyrifera Marsh.)) growing on the same site were incubated (aerobically) in the laboratory for 29 days. Rates of N mineralization in the forest floors of Douglas-fir (165.1 µg/g) was significantly greater than either birch (72.9 µg/g) or lodgepole pine (51.2 µg/g). Douglas-fir forest floors also had the highest N concentration, lowest C/N ratio, and highest NH4-N concentrations, followed by paper birch and lodgepole pine. Douglas-fir forest floors also mineralized more N per unit of either N or C than the other species. There were no differences in rates of CO2-C mineralization in forest floors among the three species. Nitrogen mineralization rates were positively correlated with the N concentration of the forest floor (r2 = 0.81) and also with the C/N and NH4-N concentration of the forest floor. Nitrogen concentration, C/N, and lignin/N of foliar litter were poor predictors of N mineralization rates resulting from Douglas-fir litter having the lowest N concentrations in litter but the highest rates of net N mineralization in the forest floor. Nitrogen mineralization in the forest floor was negatively correlated (r2 = 0.67) with the lignin concentration in foliar litter. Douglas-fir litter had low lignin concentrations, which may allow more of the mineralized N to remain in inorganic forms rather than being bound in humus. Our results suggest that a component of Douglas-fir might improve N availability in coniferous forest floors.


2001 ◽  
Vol 1 ◽  
pp. 505-513 ◽  
Author(s):  
Frank S. Gilliam ◽  
Frank C.C. Somerville ◽  
Frank N.L. Lyttle ◽  
Frank M.B. Adams

Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of N saturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturated soils from FEF, and how these effects varied between high N-processing vs. low N-processing soils collected from two watersheds, WS3 (fertilized with [NH4]2SO4) and WS4 (untreated control). Samples of forest floor material (O1 horizon) and mineral soil (to a 5-cm depth) were taken from three subplots within each of four plots that represented the extremes of highest and lowest rates of net N mineralization and nitrification (hereafter, high N and low N, respectively) of untreated WS4 and N-treated WS3: control/low N, control/high N, N-treated/low N, N-treated/high N. Forest floor material was analyzed for carbon (C), lignin, and N. Subsamples of mineral soil were extracted immediately with 1 N KCl and analyzed for NH4+ and NO3-to determine preincubation levels. Extracts were also analyzed for Mg, Ca, Al, and pH. To test the hypothesis that the lack of net nitrification observed in field incubations on the untreated/low N plot was the result of absence of nitrifier populations, we characterized the bacterial community involved in N cycling by amplification of amoA genes. Remaining soil was incubated for 28 d at three temperatures (10, 20, and 30°C), followed by 1 NKCl extraction and analysis for NH4+and NO3-. Net nitrification was essentially 100% of net N mineralization for all samples combined. Nitrification rates from lab incubations at all temperatures supported earlier observations based on field incubations. At 30°C, rates from N-treated/high N were three times those of N-treated/low N. Highest rates were found for untreated/high N (two times greater than those of N-treated/high N), whereas untreated/low N exhibited no net nitrification. However, soils exhibiting no net nitrification tested positive for presence of nitrifying bacteria, causing us to reject our initial hypothesis. We hypothesize that nitrifier populations in such soil are being inhibited by a combination of low Ca to Al ratios in mineral soil and allelopathic interactions with mycorrhizae of ericaceous species in the herbaceous layer.


2001 ◽  
Vol 31 (5) ◽  
pp. 889-898 ◽  
Author(s):  
J Clive Carlyle ◽  
EK Sadanandan Nambiar

We examined the relationship between net nitrogen (N) mineralization (subsequently termed N mineralization) in the forest floor and mineral soil (0–0.15 m) of 20 Pinus radiata D. Don plantations ranging in age from 23 to 59 years, how mineralization was influenced by soil properties, and its relationship to wood production. Forest floor properties had a narrower relative range than the same set of mineral soil properties. Total N in the litter layer was 5.0–9.5 g·kg–1 compared with 0.23–2.53 g·kg–1 in mineral soil. Laboratory rates of net N mineralization ranged between 1.1 and 9.7 mg·kg–1·day–1 in forest floor and between 0.02 and 0.53 mg·kg–1·day–1 in mineral soil. The range in litter lignin (35.3–48.0%) was especially narrow, despite the large range in stand productivity. Nitrogen mineralized in the forest floor was not correlated with any of the measured forest floor or mineral soil properties. Nitrogen mineralized per unit mineral soil N (ksn) was negatively correlated with the mineral soil N to organic phosphorus ratio (N/Po) (r2 = 0.82). In mineral soil a relationship combining N/Po and total N concentration explained 90% of the variation in N mineralized. Nitrogen mineralized in the forest floor was correlated with that mineralized in the mineral soil when expressed per unit C or N (r2 = 0.54 or 0.57, respectively). Thus, the quality of organic matter in the forest floor partly reflected the quality of organic matter in the mineral soil with respect to N mineralization. Mineralization in mineral soil dominated the net N available to the stand. For sandy soils, wood production (m3·ha–1·year–1) was correlated with N mineralized in the forest floor + mineral soil (r2 = 0.71). In P. radiata stands growing in southern Australia, rates of wood production per unit N mineralized and per unit rainfall appear to be substantially higher than those of a wide range of natural and planted stands in North America.


2013 ◽  
Vol 37 (2) ◽  
pp. 450-461 ◽  
Author(s):  
Eduardo Mariano ◽  
Paulo Cesar Ocheuze Trivelin ◽  
José Marcos Leite ◽  
Michele Xavier Vieira Megda ◽  
Rafael Otto ◽  
...  

Considering nitrogen mineralization (N) of soil organic matter is a key aspect for the efficient management of N fertilizers in agricultural systems. Long-term aerobic incubation is the standard technique for calibrating the chemical extraction methods used to estimate the potentially mineralizable N in soil. However, the technique is laborious, expensive and time-consuming. In this context, the aims of this study were to determine the amount of soil mineralizable N in the 0-60 cm layer and to evaluate the use of short-term anaerobic incubation instead of long-term aerobic incubation for the estimation of net N mineralization rates in soils under sugarcane. Five soils from areas without previous N fertilization were used in the layers 0-20, 20-40 and 40-60 cm. Soil samples were aerobically incubated at 35 ºC for 32 weeks or anaerobically incubated (waterlogged) at 40 ºC for seven days to determine the net soil N mineralization. The sand, silt and clay contents were highly correlated with the indexes used for predicting mineralizable N. The 0-40 cm layer was the best sampling depth for the estimation of soil mineralizable N, while in the 40-60 cm layer net N mineralization was low in both incubation procedures. Anaerobic incubation provided reliable estimates of mineralizable N in the soil that correlated well with the indexes obtained using aerobic incubation. The inclusion of the pre-existing NH4+-N content improved the reliability of the estimate of mineralizable N obtained using anaerobic incubation.


2000 ◽  
Vol 80 (2) ◽  
pp. 271-276 ◽  
Author(s):  
T. Paré ◽  
H. Dinel ◽  
M. Schnitzer

The recycling of poultry (Gallus gallus domesticus) manure (PM) needs to be done in a manner that will not only improve soil physical, chemical and biological properties but also minimize environmental risks. Untreated PM is more difficult to handle and more expensive to apply than granular fertilizers; the application of PM in the form of tablets may be a suitable alternative. It is necessary to determine whether C and N mineralization in tabletized PM (T-PM) differs from non-tabletized PM (NT-PM). Net C and N mineralization from a Brandon loam soil (Typic Endoaquoll) amended with NT-PM and T-PM, were measured in an incubation study at 25 °C. After 60 d of incubation, about 62 and 77% of total PM carbon was mineralized in NT-PM and T-PM amended soils, respectively. Carbon mineralization was not stimulated by the addition of PM tablets containing NPK to soil, while in soils mixed with NT-PM + NPK, soil respiration was reduced. Net N mineralization was similar in soils amended with T-PM and NT-PM, although changes in ammonium (NH4+–N) concentrations during incubation differed. Generally more NH4+–N accumulated in soil amended with T-PM and T-PM + NPK than with NT-PM and NT-PM + NPK The concentrations of nitrate (NO3−–N) did not differ in soils amended with T-PM and NT-PM, indicating a reduction in nitrification and NH4+–N accumulation in soils amended with PM tablets. Key words: Poultry manure, tablets, carbon mineralization, nitrogen mineralization, organic fertilizer


2002 ◽  
Vol 32 (2) ◽  
pp. 344-352 ◽  
Author(s):  
P W Clinton ◽  
R B Allen ◽  
M R Davis

Stemwood production, N pools, and N availability were determined in even-aged (10, 25, 120, and >150-year-old) stands of a monospecific mountain beech (Nothofagus solandri var. cliffortioides (Hook. f.) Poole) forest in New Zealand recovering from catastrophic canopy disturbance brought about by windthrow. Nitrogen was redistributed among stemwood biomass, coarse woody debris (CWD), the forest floor, and mineral soil following disturbance. The quantity of N in stemwood biomass increased from less than 1 kg/ha in seedling stands (10 years old) to ca. 500 kg/ha in pole stands (120 years old), but decreased in mature stands (>150 years old). In contrast, the quantity of N stored in CWD declined rapidly with stand development. Although the mass of N stored in the forest floor was greatest in the pole stands and least in the mature stands, N availability in the forest floor did not vary greatly with stand development. The mass of N in the mineral soil (0–100 mm depth) was also similar for all stands. Foliar N concentrations, net N mineralization, and mineralizable N in the mineral soil (0–100 mm depth) showed similar patterns with stage of stand development, and indicated that N availability was greater in sapling (25 years old) and mature stands than in seedling and pole stands. We conclude that declining productivity in older stands is associated more with reductions in cation availability, especially calcium, than N availability.


2014 ◽  
Vol 6 (2) ◽  
pp. 3051-3074 ◽  
Author(s):  
M. K. Abbasi ◽  
M. M. Tahir ◽  
N. Sabir ◽  
M. Khurshid

Abstract. Application of plant residues as soil amendment may represent a valuable recycling strategy that affects on carbon (C) and nitrogen (N) cycling, soil properties improvement and plant growth promotion. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water filled pore space (WFPS)) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues i.e. the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Poplus euramericana, Rubinia pseudoacacia and Elagnus umbellate incorporated into the soil at the rate of 200 mg residue N kg−1 soil. The diverse plant residues showed wide variation in total N, carbon, lignin, polyphenols and C/N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of G. max and the shoot and root of T. repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg−1 and representing a 55, 37 and 36% of added N being released from these resources. The roots of G. max and Z. mays and the shoot of Z. mays showed continuous negative values throughout the incubation showing net immobilization. After an initial immobilization, leaves of P. euramericana, R. pseudoacacia and E. umbellate exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg−1, respectively and representing a 16, 32 and 33% of added N being released. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01), and negatively correlated with lignin content (r = −0.84; p ≤ 0.01), C/N ratio (r = −0.69; p ≤ 0.05), lignin/N ratio (r = −0.68; p ≤ 0.05), polyphenol/N ratio (r = −0.73; p ≤ 0.05) and ligin + polyphenol/N ratio (r = −0.70; p ≤ 0.05) indicating a significant role of residue chemical composition and quality in regulating N transformations and cycling in soil. The present study indicates that incorporation of plant residues strongly modify the mineralization-immobilization turnover (MIT) of soil that can be taken into account to develop synchronization between net N mineralization and crop demand in order to maximize N delivery and minimize N losses.


Sign in / Sign up

Export Citation Format

Share Document