First-year growth response of four Populus trichocarpa × Populus deltoides clones to fertilizer placement and level

1999 ◽  
Vol 29 (5) ◽  
pp. 554-562 ◽  
Author(s):  
R van den Driessche

Fertilizer (18:40:0, N:P:K) was applied by two methods, each at different levels, following establishment of a hybrid poplar (Populus trichocarpa Torr. & Gray × Populus deltoides Bartr. ex Marsh.) plantation, containing four clones, on central Vancouver Island. Nitrogen and P were supplied at 0, 100, and 200 kg·ha-1 by banding, and at 0, 25 and 50 kg·ha-1 by placing in holes adjacent to cuttings. After one season, response to placed treatments (mean height 182 cm) was greater than to banded treatments (mean height 149 cm). The 50 kg·ha-1 placed treatment increased stem volume 4.3-fold above control, and the 200 kg·ha-1 banded treatment increased stem volume 2.4-fold above control. Uptake of N and P was about 10-fold greater per kilogram of fertilizer nutrient for placed than banded treatments. Fertilizer increased leaf N concentration, but concentrations of most other nutrients declined despite increased uptake. Significant increases in stem volume occurred when leaf N concentration was about 29 g·kg-1 in clone 1, but 23-25 g·kg-1 in the other clones. Clone 2 tolerated foliage P concentrations below 1.4 g·kg-1 at the greatest growth rates. Stem volume was positively correlated with soil total N% and organic C% in the 16-30 cm horizon.

Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 771 ◽  
Author(s):  
Yang Liu ◽  
Qingliang Liu ◽  
Tongli Wang ◽  
Shengzuo Fang

Leaf stoichiometry (nitrogen (N), phosphorus (P) and N:P ratio) is not only important for studying nutrient composition in forests, but also reflects plant biochemical adaptation to geographic and climate conditions. However, patterns of leaf stoichiometry and controlling factors are still unclear for most species. In this study, we determined leaf N and P stoichiometry and their relationship with soil properties, geographic and climate variables for Cyclocarya paliurus based on a nation-wide dataset from 30 natural populations in China. The mean values of N and P concentrations and N:P ratios were 9.57 mg g−1, 0.91 mg g−1 and 10.51, respectively, indicating that both leaf N and P concentrations in C. paliurus forests were lower than those of China and the global flora, and almost all populations were limited in N concentration. We found significant differences in leaf N and P concentrations and N:P ratios among the sampled C. paliurus populations. However, there were no significant correlations between soil properties (including organic C, total N and P concentrations) and leaf stoichiometry. The pattern of variation in leaf N concentration across the populations was positively correlated with latitude (24.46° N–32.42° N), but negatively correlated with mean annual temperature (MAT); meanwhile, leaf N concentration and N:P ratios were negatively correlated with mean temperature in January (MTmin) and mean annual frost-free period (MAF). Together, these results suggested that temperature-physiological stoichiometry with a latitudinal trend hold true at both global and regional levels. In addition, the relationships between leaf stoichiometry and climate variables provided information on how leaf stoichiometry of this species may respond to climate change.


1988 ◽  
Vol 28 (3) ◽  
pp. 401 ◽  
Author(s):  
DO Huett ◽  
G Rose

The tomato cv. Flora-Dade was grown in sand culture with 4 nitrogen (N) levels of 1.07-32.14 mmol L-1 applied as nitrate each day in a complete nutrient solution. The youngest fully opened leaf (YFOL) and remaining (bulked) leaves were harvested at regular intervals over the 16-week growth period. Standard laboratory leaf total and nitrate N determinations were conducted in addition to rapid nitrate determinations on YFOL petiole sap. The relationships between plant growth and leaf N concentration, which were significantly affected by N application level, were used to derive diagnostic leaf N concentrations. Critical and adequate concentrations in petiole sap of nitrate-N, leaf nitrate-N and total N for the YFOL and bulked leaf N were determined from the relationship between growth rate relative to maximum at each sampling time and leaf N concentration. YFOL petiole sap nitrate-N concentration, which can be measured rapidly in the field by using commercial test strips, gave the most sensitive guide to plant N status. Critical values of 770-1 120 mg L-I were determined over the 10-week period after transplanting (first mature fruit). YFOL (leaf + petiole) total N concentration was the most consistent indicator of plant N status where critical values of4.45-4.90% were recorded over the 4- 12 week period after transplanting (early harvests at 12 weeks). This test was less sensitive but more precise than the petiole sap nitrate test. The concentrations of N, potassium, phosphorus, calcium and magnesium in YFOL and bulked leaf corresponding to the N treatments producing maximum growth rates are presented, because nutrient supply was close to optimum and the leaf nutrient concentrations can be considered as adequate levels.


2021 ◽  
Vol 13 (5) ◽  
pp. 927
Author(s):  
Jie Wang ◽  
Xiaojun Shi ◽  
Yangchun Xu ◽  
Caixia Dong

The timely estimation of nitrogen (N) requirements is essential for managing N fertilizer application in pear orchards. Visible/near infrared spectroscopy is a non-destructive and effective technique for real-time assessment of leaf N concentration, but its utility for decisions about fertilizer application in the pear orchards remains to be determined. In this study, we used leaf spectroscopy to determine leaf N concentration, used this value to calculate the amounts of N required for supplementary fertilization, and then evaluated the effects of the application. Over the two-year study, Cuiguan pear trees were treated with N at the following rates: 0 (N0), 100 (N1), 200 (N2), 300 (N3), and 400 (N4) g N per tree, regarded as five “controlled” N application rates. Another four “regulatory” treatments (Nr1-4) were fertilized as the “controlled” N application rates the first year, then given adjusted N application by topdressing as calculated using the N concentrations inferred from visible/near infrared spectroscopy data the second year. A model (R2 = 0.82) was established the first year to relate leaf spectra and N concentration using a partial least squares regression with full bands (350–2500 nm). The amount of N in the topdressing for the supplemental treatments was determined using the predicted leaf N concentration and the topdressing calculation method adapted from the N balance formula. Results showed that adjusted N applications of the Nr1 and Nr2 increased yield by 26% and 23%, respectively, over the controlled treatments N1 and N2. Although treatments Nr3 and Nr4 did not increase yield significantly over N3 and N4, the partial factor productivity of nitrogen in Nr4 was higher than the N4. The transverse diameter of fruit from Nr1 trees was significantly higher than from N1 trees, while the longitudinal diameter of fruit from Nr1, Nr2, and Nr3 trees was significantly higher than from N1, N2 and N3 trees, suggesting that fruit longitudinal growth and single-fruit weight is stimulated by adjusted N applications. However, the soluble solids in fruit from trees receiving adjusted N were not significantly greater than in fruit from non-supplemented trees. In conclusion, our results illustrate that regulatory N management contributes to fruit yield and quality especially in the nitrogen deficiency condition and improves the nitrogen use efficiency in nitrogen surplus. The N prediction model established using the nondestructive visible/near infrared spectroscopy is convenient and economical.


Heliyon ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. e05718
Author(s):  
Md. Akhter Hossain Chowdhury ◽  
Taslima Sultana ◽  
Md. Arifur Rahman ◽  
Tanzin Chowdhury ◽  
Christian Ebere Enyoh ◽  
...  

2014 ◽  
Vol 44 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Amy L. Klocko ◽  
Richard Meilan ◽  
Rosalind R. James ◽  
Venkatesh Viswanath ◽  
Cathleen Ma ◽  
...  

The stability and value of transgenic pest resistance for promoting tree growth are poorly understood. These data are essential for determining if such trees could be beneficial to commercial growers in the face of substantial regulatory and marketing costs. We investigated growth and insect resistance in hybrid poplar expressing the cry3Aa transgene in two field trials. An initial screening of 502 trees comprising 51 transgenic gene insertion events in four clonal backgrounds (Populus trichocarpa × Populus deltoides, clones 24-305, 50-197, and 198-434; and P. deltoides × Populus nigra, clone OP-367) resulted in transgenic trees with greatly reduced insect damage. A large-scale study of 402 trees from nine insertion events in clone OP-367, conducted over two growing seasons, demonstrated reduced tree damage and significantly increased volume growth (mean 14%). Quantification of Cry3Aa protein indicated high levels of expression, which continued after 14 years of annual or biannual coppice in a clone bank. With integrated management, the cry3Aa gene appears to be a highly effective tool for protecting against leaf beetle damage and improving yields from poplar plantations.


2011 ◽  
Vol 62 (6) ◽  
pp. 474 ◽  
Author(s):  
Tong-Chao Wang ◽  
B. L. Ma ◽  
You-Cai Xiong ◽  
M. Farrukh Saleem ◽  
Feng-Min Li

Optical sensing techniques offer an instant estimation of leaf nitrogen (N) concentration during the crop growing season. Differences in plant-moisture status, however, can obscure the detection of differences in N levels. This study presents a vegetation index that robustly measures differences in foliar N levels across a range of plant moisture levels. A controlled glasshouse study with maize (Zea mays L.) subjected to both water and N regimes was conducted in Ottawa, Canada. The purpose of the study was to identify spectral waveband(s), or indices derived from different wavebands, such as the normalised difference vegetation index (NDVI), that are capable of detecting variations in leaf N concentration in response to different water and N stresses. The experimental design includes three N rates and three water regimes in a factorial arrangement. Leaf chlorophyll content and spectral reflectance (400–1075 nm) were measured on the uppermost fully expanded leaves at the V6, V9 and V12 growth stages (6th, 9th and 12th leaves fully expanded). N concentrations of the same leaves were determined using destructive sampling. A quantitative relationship between leaf N concentration and the normalised chlorophyll index (normalised to well fertilised and well irrigated plants) was established. Leaf N concentration was also a linear function (R2 = 0.9, P < 0.01) of reflectance index (NDVI550, 760) at the V9 and V12 growth stages. Chlorophyll index increased with N nutrition, but decreased with water stress. Leaf reflectance at wavebands of 550 ± 5 nm and 760 ± 5 nm were able to separate water- and N-stressed plants from normal growing plants with sufficient water and N supply. Our results suggest that NDVI550, 760 and normalised chlorophyll index hold promise for the assessment of leaf N concentration at the leaf level of both normal and water-stressed maize plants.


2020 ◽  
Vol 12 (7) ◽  
pp. 1139
Author(s):  
Rui Dong ◽  
Yuxin Miao ◽  
Xinbing Wang ◽  
Zhichao Chen ◽  
Fei Yuan ◽  
...  

Nitrogen (N) is one of the most essential nutrients that can significantly affect crop grain yield and quality. The implementation of proximal and remote sensing technologies in precision agriculture has provided new opportunities for non-destructive and real-time diagnosis of crop N status and precision N management. Notably, leaf fluorescence sensors have shown high potential in the accurate estimation of plant N status. However, most studies using leaf fluorescence sensors have mainly focused on the estimation of leaf N concentration (LNC) rather than plant N concentration (PNC). The objectives of this study were to (1) determine the relationship of maize (Zea mays L.) LNC and PNC, (2) evaluate the main factors influencing the variations of leaf fluorescence sensor parameters, and (3) establish a general model to estimate PNC directly across growth stages. A leaf fluorescence sensor, Dualex 4, was used to test maize leaves with three different positions across four growth stages in two fields with different soil types, planting densities, and N application rates in Northeast China in 2016 and 2017. The results indicated that the total leaf N concentration (TLNC) and PNC had a strong correlation (R2 = 0.91 to 0.98) with the single leaf N concentration (SLNC). The TLNC and PNC were affected by maize growth stage and N application rate but not the soil type. When used in combination with the days after sowing (DAS) parameter, modified Dualex 4 indices showed strong relationships with TLNC and PNC across growth stages. Both modified chlorophyll concentration (mChl) and modified N balance index (mNBI) were reliable predictors of PNC. Good results could be achieved by using information obtained only from the newly fully expanded leaves before the tasseling stage (VT) and the leaves above panicle at the VT stage to estimate PNC. It is concluded that when used together with DAS, the leaf fluorescence sensor (Dualex 4) can be used to reliably estimate maize PNC across growth stages.


2015 ◽  
Vol 39 (4) ◽  
pp. 1127-1140 ◽  
Author(s):  
Eric Victor de Oliveira Ferreira ◽  
Roberto Ferreira Novais ◽  
Bruna Maximiano Médice ◽  
Nairam Félix de Barros ◽  
Ivo Ribeiro Silva

The use of leaf total nitrogen concentration as an indicator for nutritional diagnosis has some limitations. The objective of this study was to determine the reliability of total N concentration as an indicator of N status for eucalyptus clones, and to compare it with alternative indicators. A greenhouse experiment was carried out in a randomized complete block design in a 2 × 6 factorial arrangement with plantlets of two eucalyptus clones (140 days old) and six levels of N in the nutrient solution. In addition, a field experiment was carried out in a completely randomized design in a 2 × 2 × 2 × 3 factorial arrangement, consisting of two seasons, two regions, two young clones (approximately two years old), and three positions of crown leaf sampling. The field areas (regions) had contrasting soil physical and chemical properties, and their soil contents for total N, NH+4-N, and NO−3-N were determined in five soil layers, up to a depth of 1.0 m. We evaluated the following indicators of plant N status in roots and leaves: contents of total N, NH+4-N, NO−3-N, and chlorophyll; N/P ratio; and chlorophyll meter readings on the leaves. Ammonium (root) and NO−3-N (root and leaf) efficiently predicted N requirements for eucalyptus plantlets in the greenhouse. Similarly, leaf N/P, chlorophyll values, and chlorophyll meter readings provided good results in the greenhouse. However, leaf N/P did not reflect the soil N status, and the use of the chlorophyll meter could not be generalized for different genotypes. Leaf total N concentration is not an ideal indicator, but it and the chlorophyll levels best represent the soil N status for young eucalyptus clones under field conditions.


2001 ◽  
Vol 52 (10) ◽  
pp. 1017 ◽  
Author(s):  
S. L. Willingham ◽  
K. G. Pegg ◽  
A. W. Cooke ◽  
L. M. Coates ◽  
P. W. B. Langdon ◽  
...  

Rootstock studies conducted on ‘Hass’ avocado found that rootstock had a significant impact on postharvest anthracnose susceptibility. This is the first record of such an effect for avocado. The severity and incidence of anthracnose was significantly lower on ‘Hass’ grafted to ‘Velvick’ Guatemalan seedling rootstock compared with the ‘Duke 6’ Mexican seedling rootstock. Differences in anthracnose susceptibility were related to significant differences in concentrations of antifungal dienes in the leaves and mineral nutrients in the leaves and fruits from trees grafted to different rootstocks. Leaf diene concentrations were up to 1.5 times higher in ‘Hass’ trees on the ‘Velvick’ than the ‘Duke 6’ rootstock. In ungrafted nursery stock trees, diene concentrations were around 3 times higher in ‘Velvick’ than ‘Duke 6’ leaves. The ‘Velvick’/‘Hass’ combination also had a significantly lower leaf N concentration, a significantly higher fruit flesh Mn concentration, and significantly lower and higher leaf N/Ca and Ca+Mg/K ratios, respectively. A significant correlation (r = 0.82) between anthracnose severity and skin N/Ca ratio was also evident.


Sign in / Sign up

Export Citation Format

Share Document