scholarly journals Leaf Nitrogen and Phosphorus Stoichiometry of Cyclocarya paliurus across China

Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 771 ◽  
Author(s):  
Yang Liu ◽  
Qingliang Liu ◽  
Tongli Wang ◽  
Shengzuo Fang

Leaf stoichiometry (nitrogen (N), phosphorus (P) and N:P ratio) is not only important for studying nutrient composition in forests, but also reflects plant biochemical adaptation to geographic and climate conditions. However, patterns of leaf stoichiometry and controlling factors are still unclear for most species. In this study, we determined leaf N and P stoichiometry and their relationship with soil properties, geographic and climate variables for Cyclocarya paliurus based on a nation-wide dataset from 30 natural populations in China. The mean values of N and P concentrations and N:P ratios were 9.57 mg g−1, 0.91 mg g−1 and 10.51, respectively, indicating that both leaf N and P concentrations in C. paliurus forests were lower than those of China and the global flora, and almost all populations were limited in N concentration. We found significant differences in leaf N and P concentrations and N:P ratios among the sampled C. paliurus populations. However, there were no significant correlations between soil properties (including organic C, total N and P concentrations) and leaf stoichiometry. The pattern of variation in leaf N concentration across the populations was positively correlated with latitude (24.46° N–32.42° N), but negatively correlated with mean annual temperature (MAT); meanwhile, leaf N concentration and N:P ratios were negatively correlated with mean temperature in January (MTmin) and mean annual frost-free period (MAF). Together, these results suggested that temperature-physiological stoichiometry with a latitudinal trend hold true at both global and regional levels. In addition, the relationships between leaf stoichiometry and climate variables provided information on how leaf stoichiometry of this species may respond to climate change.

Weed Science ◽  
2019 ◽  
Vol 67 (3) ◽  
pp. 339-345
Author(s):  
Xiao Sun ◽  
Jiuxin Guo ◽  
Shiwei Guo ◽  
Hui Guo ◽  
Shuijin Hu

AbstractNitrogen (N) inputs have been found to exert strong influence on leaf stoichiometry in natural ecosystems, but there are few studies investigating the effects of N in agroecosystems. Using a 5-yr fertilization experiment in rice fields, we examined the effects of N inputs on leaf stoichiometry of one crop, rice (Oryza sativa L.), and its four common weeds, barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.], Monochoria korsakowii Regel and Mack, alligatorweed [Alternanthera philoxeroides (Mart.) Griseb.], and Japanese mazus [Mazus pumilus (Burm. f.) Steenis], and further evaluated whether and how straw return mediates these effects. We found that rice and weed leaf nitrogen:phosphorus:potassium (N:P:K) stoichiometry exhibited divergent responses to N fertilizer. Weed leaf N:P:K stoichiometry was not sensitive to low (120 kg N ha−1) and regular (240 kg N ha−1) N inputs, but rice plants were, with significantly increased leaf N concentration and N:P and N:K ratios. The opposite trend was found for high N inputs (360 kg N ha−1). Rice leaf N concentration [N] did not increase further, and N:P ratios even decreased, whereas E. crus-galli and M. korsakowii had significantly increased [N] and N-related stoichiometry. We also found that the positive effects of regular N inputs on rice leaf N:P and N:K ratios were significantly dampened by straw return, but the positive effects on N:P ratios in M. pumilus leaves were enhanced by straw return. Compared with weeds, rice leaves contained low elemental concentrations across fertilization levels at grain-filling stages. These results indicate that rice has a lower N requirement than weeds at grain-filling stages, and the N supply should be managed at a relative low level to reduce the nutrient acquisition and competitive abilities of weeds. From a stoichiometric perspective, this study highlights the importance of N management in combination with straw return in controlling weeds and increasing the nutrient-use efficiency of crops.


1999 ◽  
Vol 29 (5) ◽  
pp. 554-562 ◽  
Author(s):  
R van den Driessche

Fertilizer (18:40:0, N:P:K) was applied by two methods, each at different levels, following establishment of a hybrid poplar (Populus trichocarpa Torr. & Gray × Populus deltoides Bartr. ex Marsh.) plantation, containing four clones, on central Vancouver Island. Nitrogen and P were supplied at 0, 100, and 200 kg·ha-1 by banding, and at 0, 25 and 50 kg·ha-1 by placing in holes adjacent to cuttings. After one season, response to placed treatments (mean height 182 cm) was greater than to banded treatments (mean height 149 cm). The 50 kg·ha-1 placed treatment increased stem volume 4.3-fold above control, and the 200 kg·ha-1 banded treatment increased stem volume 2.4-fold above control. Uptake of N and P was about 10-fold greater per kilogram of fertilizer nutrient for placed than banded treatments. Fertilizer increased leaf N concentration, but concentrations of most other nutrients declined despite increased uptake. Significant increases in stem volume occurred when leaf N concentration was about 29 g·kg-1 in clone 1, but 23-25 g·kg-1 in the other clones. Clone 2 tolerated foliage P concentrations below 1.4 g·kg-1 at the greatest growth rates. Stem volume was positively correlated with soil total N% and organic C% in the 16-30 cm horizon.


1988 ◽  
Vol 28 (3) ◽  
pp. 401 ◽  
Author(s):  
DO Huett ◽  
G Rose

The tomato cv. Flora-Dade was grown in sand culture with 4 nitrogen (N) levels of 1.07-32.14 mmol L-1 applied as nitrate each day in a complete nutrient solution. The youngest fully opened leaf (YFOL) and remaining (bulked) leaves were harvested at regular intervals over the 16-week growth period. Standard laboratory leaf total and nitrate N determinations were conducted in addition to rapid nitrate determinations on YFOL petiole sap. The relationships between plant growth and leaf N concentration, which were significantly affected by N application level, were used to derive diagnostic leaf N concentrations. Critical and adequate concentrations in petiole sap of nitrate-N, leaf nitrate-N and total N for the YFOL and bulked leaf N were determined from the relationship between growth rate relative to maximum at each sampling time and leaf N concentration. YFOL petiole sap nitrate-N concentration, which can be measured rapidly in the field by using commercial test strips, gave the most sensitive guide to plant N status. Critical values of 770-1 120 mg L-I were determined over the 10-week period after transplanting (first mature fruit). YFOL (leaf + petiole) total N concentration was the most consistent indicator of plant N status where critical values of4.45-4.90% were recorded over the 4- 12 week period after transplanting (early harvests at 12 weeks). This test was less sensitive but more precise than the petiole sap nitrate test. The concentrations of N, potassium, phosphorus, calcium and magnesium in YFOL and bulked leaf corresponding to the N treatments producing maximum growth rates are presented, because nutrient supply was close to optimum and the leaf nutrient concentrations can be considered as adequate levels.


Heliyon ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. e05718
Author(s):  
Md. Akhter Hossain Chowdhury ◽  
Taslima Sultana ◽  
Md. Arifur Rahman ◽  
Tanzin Chowdhury ◽  
Christian Ebere Enyoh ◽  
...  

2010 ◽  
pp. 41-49
Author(s):  
Md Abiar Rahman ◽  
Md Giashuddin Miah ◽  
Hisashi Yahata

Productivity of maize and soil properties change under alley cropping system consisting of four woody species (Gliricidia sepium, Leucaena leucocephala, Cajanus cajan and Senna siamea) at different nitrogen levels (0, 25, 50, 75 and 100% of recommended rate) were studied in the floodplain ecosystem of Bangladesh. Comparative growth performance of four woody species after pruning showed that L. leucocephala attained the highest height, while C. cajan produced the maximum number of branches. Higher and almost similar amount of pruned materials (PM) were obtained from S. siamea, G. sepium and C. cajan species. In general, maize yield increased with the increase in N level irrespective of added PM. However, 100% N plus PM, 75% N plus PM and 100% N without PM (control) produced similar yields. The grain yield of maize obtained from G. sepium alley was 2.82, 4.13 and 5.81% higher over those of L. leucocephala, C. cajan and S. siamea, respectively. Across the alley, only one row of maize in the vicinity of the woody species was affected significantly. There was an increasing trend in soil properties in terms of organic C, total N and CEC in alley cropping treatments especially in G. sepium and L. leucocephala alleys compared to the initial and control soils. Therefore, one fourth chemical N fertilizer can be saved without significant yield loss in maize production in alley cropping system.


2011 ◽  
Vol 62 (6) ◽  
pp. 474 ◽  
Author(s):  
Tong-Chao Wang ◽  
B. L. Ma ◽  
You-Cai Xiong ◽  
M. Farrukh Saleem ◽  
Feng-Min Li

Optical sensing techniques offer an instant estimation of leaf nitrogen (N) concentration during the crop growing season. Differences in plant-moisture status, however, can obscure the detection of differences in N levels. This study presents a vegetation index that robustly measures differences in foliar N levels across a range of plant moisture levels. A controlled glasshouse study with maize (Zea mays L.) subjected to both water and N regimes was conducted in Ottawa, Canada. The purpose of the study was to identify spectral waveband(s), or indices derived from different wavebands, such as the normalised difference vegetation index (NDVI), that are capable of detecting variations in leaf N concentration in response to different water and N stresses. The experimental design includes three N rates and three water regimes in a factorial arrangement. Leaf chlorophyll content and spectral reflectance (400–1075 nm) were measured on the uppermost fully expanded leaves at the V6, V9 and V12 growth stages (6th, 9th and 12th leaves fully expanded). N concentrations of the same leaves were determined using destructive sampling. A quantitative relationship between leaf N concentration and the normalised chlorophyll index (normalised to well fertilised and well irrigated plants) was established. Leaf N concentration was also a linear function (R2 = 0.9, P < 0.01) of reflectance index (NDVI550, 760) at the V9 and V12 growth stages. Chlorophyll index increased with N nutrition, but decreased with water stress. Leaf reflectance at wavebands of 550 ± 5 nm and 760 ± 5 nm were able to separate water- and N-stressed plants from normal growing plants with sufficient water and N supply. Our results suggest that NDVI550, 760 and normalised chlorophyll index hold promise for the assessment of leaf N concentration at the leaf level of both normal and water-stressed maize plants.


1995 ◽  
Vol 75 (3) ◽  
pp. 343-348 ◽  
Author(s):  
Christian Godbout ◽  
Jean-Louis Brown

A Podzolic soil from an old-growth maple hardwood forest in eastern Canada was systematically sampled from a 16.5-m-long trench in 1975. In 1986, the upper 10 cm of the B horizon was resampled from two sampling lines located on each side and parallel to the 1975 trench, one at a distance of 1 m downhill and the other at a distance of 4 m uphill. Total N, organic C, pH, and exchangeable Ca, Mg and K were measured. The objectives were to evaluate the change in the chemical status of the B horizon from 1975 to 1986 and to characterize the spatial variability of the horizon. No significant change was found in the soil chemical properties tested during this 11-yr period. No significant autocorrelation was observed between soil samples 60 cm apart, except for the downhill sampling line, which was located 1 m from the trench. For most properties, the magnitude of the difference between two soil sampling units was not proportional to the distance separating them over the range of 0.6–4.2 m. Except for pH, a difference in soil properties of more than 30% was observed in 37–56% of sample pairs 60 cm apart. Resampling near (1 m) an old soil pit may not be valid because of possible local modifications of soil properties created by the pit, even when it is filled in. Key words: Podzol, soil variability, acidic deposition, soil changes


2020 ◽  
Vol 12 (7) ◽  
pp. 1139
Author(s):  
Rui Dong ◽  
Yuxin Miao ◽  
Xinbing Wang ◽  
Zhichao Chen ◽  
Fei Yuan ◽  
...  

Nitrogen (N) is one of the most essential nutrients that can significantly affect crop grain yield and quality. The implementation of proximal and remote sensing technologies in precision agriculture has provided new opportunities for non-destructive and real-time diagnosis of crop N status and precision N management. Notably, leaf fluorescence sensors have shown high potential in the accurate estimation of plant N status. However, most studies using leaf fluorescence sensors have mainly focused on the estimation of leaf N concentration (LNC) rather than plant N concentration (PNC). The objectives of this study were to (1) determine the relationship of maize (Zea mays L.) LNC and PNC, (2) evaluate the main factors influencing the variations of leaf fluorescence sensor parameters, and (3) establish a general model to estimate PNC directly across growth stages. A leaf fluorescence sensor, Dualex 4, was used to test maize leaves with three different positions across four growth stages in two fields with different soil types, planting densities, and N application rates in Northeast China in 2016 and 2017. The results indicated that the total leaf N concentration (TLNC) and PNC had a strong correlation (R2 = 0.91 to 0.98) with the single leaf N concentration (SLNC). The TLNC and PNC were affected by maize growth stage and N application rate but not the soil type. When used in combination with the days after sowing (DAS) parameter, modified Dualex 4 indices showed strong relationships with TLNC and PNC across growth stages. Both modified chlorophyll concentration (mChl) and modified N balance index (mNBI) were reliable predictors of PNC. Good results could be achieved by using information obtained only from the newly fully expanded leaves before the tasseling stage (VT) and the leaves above panicle at the VT stage to estimate PNC. It is concluded that when used together with DAS, the leaf fluorescence sensor (Dualex 4) can be used to reliably estimate maize PNC across growth stages.


2015 ◽  
Vol 39 (4) ◽  
pp. 1127-1140 ◽  
Author(s):  
Eric Victor de Oliveira Ferreira ◽  
Roberto Ferreira Novais ◽  
Bruna Maximiano Médice ◽  
Nairam Félix de Barros ◽  
Ivo Ribeiro Silva

The use of leaf total nitrogen concentration as an indicator for nutritional diagnosis has some limitations. The objective of this study was to determine the reliability of total N concentration as an indicator of N status for eucalyptus clones, and to compare it with alternative indicators. A greenhouse experiment was carried out in a randomized complete block design in a 2 × 6 factorial arrangement with plantlets of two eucalyptus clones (140 days old) and six levels of N in the nutrient solution. In addition, a field experiment was carried out in a completely randomized design in a 2 × 2 × 2 × 3 factorial arrangement, consisting of two seasons, two regions, two young clones (approximately two years old), and three positions of crown leaf sampling. The field areas (regions) had contrasting soil physical and chemical properties, and their soil contents for total N, NH+4-N, and NO−3-N were determined in five soil layers, up to a depth of 1.0 m. We evaluated the following indicators of plant N status in roots and leaves: contents of total N, NH+4-N, NO−3-N, and chlorophyll; N/P ratio; and chlorophyll meter readings on the leaves. Ammonium (root) and NO−3-N (root and leaf) efficiently predicted N requirements for eucalyptus plantlets in the greenhouse. Similarly, leaf N/P, chlorophyll values, and chlorophyll meter readings provided good results in the greenhouse. However, leaf N/P did not reflect the soil N status, and the use of the chlorophyll meter could not be generalized for different genotypes. Leaf total N concentration is not an ideal indicator, but it and the chlorophyll levels best represent the soil N status for young eucalyptus clones under field conditions.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 164 ◽  
Author(s):  
Mengjun Hu ◽  
Yanchun Liu ◽  
Tiantian Wang ◽  
Yuanfeng Hao ◽  
Zheng Li ◽  
...  

Fire is the predominant natural disturbance that influences the community structure as well as ecosystem function in forests. This study was conducted to examine the soil properties, loss of aboveground biomass, and understory plant community in response to an anthropogenic fire in a coniferous (Pinus massoniana Lamb.) and broadleaf (Quercus acutissima Carruth.) mixed forest in a subtropical–temperate climatic transition zone in Central China. The results showed that soil pH, NO3−-N concentration, and microbial biomass carbon (C) increased three months after the fire; however, there were no significant differences in soil organic C, total nitrogen (N), NH4+-N concentration, or microbial biomass N between the burned and unburned observed plots. The total aboveground biomass was 39.0% lower in the burned than unburned plots four weeks after fire. Direct biomass combustion (19.15 t ha−1, including understory shrubs and litters) was lower than dead wood biomass loss (23.69 t ha−1) caused by the fire. The declining trends of tree mortality with increasing diameter at breast height for both pine and oak trees suggest that small trees are more likely to die during and after fires due to the thinner bark of small trees and tree and branch fall. In addition, burning significantly stimulated the density of shrub (160.9%) and herb (88.0%), but it also affected the richness of shrub and herb compared with that in the unburned plots two months after the fire. The rapid recovery of understory plants after fires suggest that the diversity of understory species could benefit from low-severity fires. Our findings highlight that the decomposition of dead wood and understory community recovery should be considered for offsetting C emissions after fires for further research.


Sign in / Sign up

Export Citation Format

Share Document