Wet and dry extraction of coconut oil: impact on lipid metabolic and antioxidant status in cholesterol coadministered rats

2009 ◽  
Vol 87 (8) ◽  
pp. 610-616 ◽  
Author(s):  
K. Govindan Nevin ◽  
Thankappan Rajamohan

Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague–Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.

2017 ◽  
Vol 19 (3) ◽  
pp. 1-11 ◽  
Author(s):  
Yaaser Almulaiky ◽  
Abudukadeer Kuerban ◽  
Faisal Aqlan ◽  
Saeed Alzahrani ◽  
Mohammed Baeshen ◽  
...  

2019 ◽  
Vol 44 (7) ◽  
pp. 774-782 ◽  
Author(s):  
Sevda Tanrıkulu-Küçük ◽  
Canan Başaran-Küçükgergin ◽  
Muhammed Seyithanoğlu ◽  
Semra Doğru-Abbasoğlu ◽  
Hikmet Koçak ◽  
...  

This study investigated the effects of curcumin and capsaicin on testicular and hepatic oxidant–antioxidant status in rats fed a high-fat diet (HFD). Male Sprague–Dawley rats were divided into 5 groups (8 rats per group). The control group was fed a normal control diet (standard laboratory chow), the HFD group was fed HFD (60% of total calories from fat), the HFD+CUR group received HFD supplemented with curcumin (1.5 g curcumin/kg HFD), the HFD+CAP group was given HFD supplemented with capsaicin (0.15 g capsaicin/kg HFD), and the HFD+CUR+CAP group received HFD supplemented with curcumin and capsaicin for 16 weeks. Hepatic and testicular thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS), glutathione (GSH) levels, glutathione transferase activity, and Cu-Zn superoxide dismutase, glutathione peroxidase, and catalase protein expression and enzyme activities were measured. Protein expression was determined by Western blotting. GSH levels and antioxidant enzyme activities were measured with colorimetric methods. HFD slightly increased hepatic and testicular oxidative stress parameters. GSH levels did not change between groups. TBARS and ROS levels were significantly reduced in the HFD+CUR+CAP group compared with the HFD group. Liver and testis antioxidant enzyme activities and expression increased significantly with combined capsaicin and curcumin treatment. Curcumin and capsaicin treatment attenuated testicular and hepatic oxidative stress and enhanced the antioxidant defense system. The combination of capsaicin and curcumin with HFD seems to have some remarkable and beneficial effects on testicular oxidative damage in the fatty liver rat model.


2019 ◽  
Vol 16 (04) ◽  
pp. 725-729
Author(s):  
Tuğba Gür ◽  
Fatih Karahan ◽  
Halit Demir ◽  
Canan Demir

Superoxide dismutase (SOD) and catalase enzyme (CAT) activities with strong antioxidant properties were determined in cherry fruits obtained from different regions such as Aegean, Mediterranean and Marmara. The cherry fruit extract was prepared and some antioxidant activities were determined. Cherry (prunus avium) is a fruit belonging to the family of rosaceae. Its homeland is asia minor. Many varieties are grown in Turkey. There are more than a hundred culture forms grown in north america with temperate regions of europe and asia. Its body is in the form of a flat-shell tree. Cherry is a fruit rich in vitamin C. They do not contain fat and cholesterol. It contains essential minerals such as fiber, vitamin A, iron, calcium, protein as well as abundant potassium. Red cherries also contain melatonin, which helps combat harmful toxins. Due to its antioxidant properties, it has many benefits such as prevention of some types of cancer, reduction of inflammation, prevention of gout and removal of muscle pain. For this purpose, it is aimed to determine some enzyme activities which are thought to be found in cherry fruit. In this study, antioxidant enzyme activities in cherry fruit were determined by spectrophotometric method. Additonaly the findings were analyzed by using multidimensional statistical methods and the results were discussed in a multidimensional manner. It is obtained that the highest catalase enzyme activity was determined in the Aegean region (4.330 U/L), while the highest superoxide dismutase enzyme activity was found in the Mediterranean region (7.176 U/L).


2003 ◽  
Vol 81 (10) ◽  
pp. 929-936 ◽  
Author(s):  
Sylvie Bobillier-Chaumont ◽  
Laurence Nicod ◽  
Lysiane Richert ◽  
Alain Berthelot

Because oxidative stress is involved in arterial hypertension, impairment of hepatic antioxidant defences could develop in the course of this disease. Metallothionein (MT), an antioxidant protein, is present in high rates in the liver. The aim of this study was to investigate the effect of a mineralocorticoid-salt treatment on blood pressure, hepatic antioxidant enzyme activities, and cardiac MT levels in transgenic MT null mice compared with control mice to further clarify the role of MT during the experimental development of arterial hypertension. Control and transgenic MT –/– mice were submitted to an 8-week mineralocorticoid-salt treatment. Hepatic glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase activities and cardiac MT and mineral levels were measured. Mineralocorticoid-salt treatment induced an increase in blood pressure in both transgenic MT –/– and control mice that was associated with an impairment of liver antioxidant status. MT deficiency was associated with modifications of hepatic antioxidant enzyme activities and with a decrease in cardiac iron levels. Adaptive processes of antioxidant systems may explain the absence of an effect of metallothionein deficiency on the development of mineralocorticoid-salt hypertension. The interactions that occur between the in vivo antioxidant systems probably produce a complex regulation of the oxidative balance and consequently prevent antioxidant deficiency.Key words: hepatic antioxidant enzymes, metallothionein, transgenic mice, DOCA-salt hypertension.


Reproduction ◽  
1995 ◽  
Vol 105 (2) ◽  
pp. 253-257 ◽  
Author(s):  
K. Shimamura ◽  
N. Sugino ◽  
Y. Yoshida ◽  
Y. Nakamura ◽  
K. Ogino ◽  
...  

1992 ◽  
Vol 13 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Jolanta GROMADZINSKA ◽  
Maria SKLODOWSKA ◽  
Piotr WOLKANIN ◽  
Wojciech WASOWICZ ◽  
Oscar ZAMBRANO QUISPE ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
C. Berzosa ◽  
I. Cebrián ◽  
L. Fuentes-Broto ◽  
E. Gómez-Trullén ◽  
E. Piedrafita ◽  
...  

Antioxidant defences are essential for cellular redox regulation. Since free-radical production may be enhanced by physical activity, herein, we evaluated the effect of acute exercise on total antioxidant status (TAS) and the plasma activities of catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase and its possible relation to oxidative stress resulting from exercise. Healthy untrained male subjects () performed three cycloergometric tests, including maximal and submaximal episodes. Venous blood samples were collected before and immediately after each different exercise. TAS and enzyme activities were assessed by spectrophotometry. An increase of the antioxidant enzyme activities in plasma was detected after both maximal and submaximal exercise periods. Moreover, under our experimental conditions, exercise also led to an augmentation of TAS levels. These findings are consistent with the idea that acute exercise may play a beneficial role because of its ability to increase antioxidant defense mechanisms through a redox sensitive pathway.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Li-Na Deng ◽  
Gong-Neng Feng ◽  
Yue Gao ◽  
Yu-Xiang Shen ◽  
Hong-Shan Li ◽  
...  

Barley grass possesses high nutritional value and antioxidant properties. In this study, the phytochemical constituents and antioxidant enzyme activities in six cultivars of barley grass were explored at three developmental stages: tillering, jointing, and booting stages. Total chlorophyll (Chl t) and carotenoid (Car) content, chlorophyll a/b (Chl a/b) ratio, total nitrogen nutrition (TNN), and total soluble protein (TSP) content, and superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activities were assayed. The results indicated that the cultivar × development interaction was significant and that developmental stage was the main factor affecting the parameters studied. Cultivars had a negligible effect on these parameters, which varied with the developmental stages. In the tillering stage, Chl t and Car content, TNN, and POD activity achieved their highest value; in the jointing stage, SOD activity peaked; in the booting stage, Chl a/b ratio, TSP content, and PPO activity showed their highest values. TNN showed a negative correlation with TSP. Compared with those in the jointing, Chl t, Car, TSP, TNN content, Chl a/b ratio, and POD and PPO activities increased in the booting and the tillering stages, whereas SOD activity decreased. The differences in phytochemical constituents and antioxidant enzyme activities in barley grass were mainly correlated with the developmental stages. The aim of this study was to demonstrate the influence of developmental stages of barley grass on its phytochemical profile and antioxidant activities. Our results will help understand the mechanism of action of barley grass and provide theoretical support for the therapeutic application of barley grass.


Sign in / Sign up

Export Citation Format

Share Document