Antioxidant status in the liver of hypertensive and metallothionein-deficient mice

2003 ◽  
Vol 81 (10) ◽  
pp. 929-936 ◽  
Author(s):  
Sylvie Bobillier-Chaumont ◽  
Laurence Nicod ◽  
Lysiane Richert ◽  
Alain Berthelot

Because oxidative stress is involved in arterial hypertension, impairment of hepatic antioxidant defences could develop in the course of this disease. Metallothionein (MT), an antioxidant protein, is present in high rates in the liver. The aim of this study was to investigate the effect of a mineralocorticoid-salt treatment on blood pressure, hepatic antioxidant enzyme activities, and cardiac MT levels in transgenic MT null mice compared with control mice to further clarify the role of MT during the experimental development of arterial hypertension. Control and transgenic MT –/– mice were submitted to an 8-week mineralocorticoid-salt treatment. Hepatic glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase activities and cardiac MT and mineral levels were measured. Mineralocorticoid-salt treatment induced an increase in blood pressure in both transgenic MT –/– and control mice that was associated with an impairment of liver antioxidant status. MT deficiency was associated with modifications of hepatic antioxidant enzyme activities and with a decrease in cardiac iron levels. Adaptive processes of antioxidant systems may explain the absence of an effect of metallothionein deficiency on the development of mineralocorticoid-salt hypertension. The interactions that occur between the in vivo antioxidant systems probably produce a complex regulation of the oxidative balance and consequently prevent antioxidant deficiency.Key words: hepatic antioxidant enzymes, metallothionein, transgenic mice, DOCA-salt hypertension.

2009 ◽  
Vol 87 (8) ◽  
pp. 610-616 ◽  
Author(s):  
K. Govindan Nevin ◽  
Thankappan Rajamohan

Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague–Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.


2019 ◽  
Vol 44 (7) ◽  
pp. 774-782 ◽  
Author(s):  
Sevda Tanrıkulu-Küçük ◽  
Canan Başaran-Küçükgergin ◽  
Muhammed Seyithanoğlu ◽  
Semra Doğru-Abbasoğlu ◽  
Hikmet Koçak ◽  
...  

This study investigated the effects of curcumin and capsaicin on testicular and hepatic oxidant–antioxidant status in rats fed a high-fat diet (HFD). Male Sprague–Dawley rats were divided into 5 groups (8 rats per group). The control group was fed a normal control diet (standard laboratory chow), the HFD group was fed HFD (60% of total calories from fat), the HFD+CUR group received HFD supplemented with curcumin (1.5 g curcumin/kg HFD), the HFD+CAP group was given HFD supplemented with capsaicin (0.15 g capsaicin/kg HFD), and the HFD+CUR+CAP group received HFD supplemented with curcumin and capsaicin for 16 weeks. Hepatic and testicular thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS), glutathione (GSH) levels, glutathione transferase activity, and Cu-Zn superoxide dismutase, glutathione peroxidase, and catalase protein expression and enzyme activities were measured. Protein expression was determined by Western blotting. GSH levels and antioxidant enzyme activities were measured with colorimetric methods. HFD slightly increased hepatic and testicular oxidative stress parameters. GSH levels did not change between groups. TBARS and ROS levels were significantly reduced in the HFD+CUR+CAP group compared with the HFD group. Liver and testis antioxidant enzyme activities and expression increased significantly with combined capsaicin and curcumin treatment. Curcumin and capsaicin treatment attenuated testicular and hepatic oxidative stress and enhanced the antioxidant defense system. The combination of capsaicin and curcumin with HFD seems to have some remarkable and beneficial effects on testicular oxidative damage in the fatty liver rat model.


1994 ◽  
Vol 267 (2) ◽  
pp. R439-R445 ◽  
Author(s):  
C. Leeuwenburgh ◽  
R. Fiebig ◽  
R. Chandwaney ◽  
L. L. Ji

Glutathione (GSH) content and antioxidant enzyme activities were investigated in skeletal muscle of young, adult, and old male Fischer 344 rats. Furthermore, the effect of 10 wk of exercise training on these antioxidant systems was evaluated at all ages. In the soleus muscle, GSH concentration increased markedly with age, with no significant change in glutathione disulfide (GSSG) content. Training caused a 30% decrease of GSH (P < 0.05) in the soleus of young rats and a reduction of the GSH-to-GSSG ratio at all ages. Activity of gamma-glutamyl transpeptidase (GGT), a key enzyme for GSH uptake by muscle, was also significantly decreased with training. GSH, GSSG, and the GSH-to-GSSG ratio were not altered with aging or training in the deep portion of vastus lateralis muscle (DVL). Activities of GSH peroxidase (GPX), GSSG reductase (GR), superoxide dismutase (SOD), catalase (CAT), and GSH sulfur-transferase were increased significantly with aging in both soleus and DVL. In DVL, training increased GPX and SOD activities in the young rats, whereas in soleus, training decreased GR and CAT activities in the adult rats and GGT and CAT activities in the old rats. Muscle lipid peroxidation was significantly increased with aging in both DVL and soleus but was not affected by training. These data indicate that aging may cause not only an overall elevation of antioxidant enzyme activities but also a fiber-specific adaptation of GSH system in skeletal muscle. Exercise training, although increasing selective antioxidant enzymes in the young rats, does not offer additional protection against oxidative stress in the senescent muscle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ke Ma ◽  
Weili Zhang ◽  
Liguang Zhang ◽  
Xiaoyong He ◽  
Yu Fan ◽  
...  

Foxtail millet (Setaria Italica L.) plays a principal role in food security in Africa and Asia, but it is sensitive to a variety of herbicides. This study was performed to clarify whether pyrazosulfuron-methyl can be used in foxtail millet fields and the effect of pyrazosulfuron-methyl on the photosynthetic performance of foxtail millet. Two foxtail millet varieties (Jingu 21 and Zhangzagu 10) were subjected to five doses (0, 15, 30, 60, and 120 g ai ha−1) of pyrazosulfuron-methyl in pot and field experiments. The plant height, leaf area, stem diameter, photosynthetic pigment contents, gas exchange parameters, chlorophyll fluorescence parameters, antioxidant enzyme activities, and antioxidant contents at 7 and 15 days after pyrazosulfuron-methyl application, and the yield of foxtail millet were measured. The results suggested that pyrazosulfuron-methyl inhibited the growth of foxtail millet and reduced the photosynthetic pigment contents, photosynthetic rate, and photosynthetic system II activity. Similarly, pyrazosulfuron-methyl decreased the antioxidant enzyme activities and antioxidant contents. These results also indicated that the toxicity of pyrazosulfuron-methyl to foxtail millet was decreased gradually with the extension of time after application; however, the foxtail millet yield was still significantly reduced. Therefore, pyrazosulfuron-methyl is not recommended for application in foxtail millet fields.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
C. Berzosa ◽  
I. Cebrián ◽  
L. Fuentes-Broto ◽  
E. Gómez-Trullén ◽  
E. Piedrafita ◽  
...  

Antioxidant defences are essential for cellular redox regulation. Since free-radical production may be enhanced by physical activity, herein, we evaluated the effect of acute exercise on total antioxidant status (TAS) and the plasma activities of catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase and its possible relation to oxidative stress resulting from exercise. Healthy untrained male subjects () performed three cycloergometric tests, including maximal and submaximal episodes. Venous blood samples were collected before and immediately after each different exercise. TAS and enzyme activities were assessed by spectrophotometry. An increase of the antioxidant enzyme activities in plasma was detected after both maximal and submaximal exercise periods. Moreover, under our experimental conditions, exercise also led to an augmentation of TAS levels. These findings are consistent with the idea that acute exercise may play a beneficial role because of its ability to increase antioxidant defense mechanisms through a redox sensitive pathway.


2018 ◽  
Vol 45 (7) ◽  
pp. 745 ◽  
Author(s):  
Abdelaleim I. ElSayed ◽  
Mohammed S. Rafudeen ◽  
Mohamed A. M. El-hamahmy ◽  
Dennis C. Odero ◽  
M. Sazzad Hossain

Plants have evolved complex mechanisms to mitigate osmotic and ionic stress caused by high salinity. The effect of exogenous spermine (Spm) and spermidine (Spd) on defence responses of wheat seedlings under NaCl stress was investigated by measuring antioxidant enzyme activities and the transcript expression of corresponding genes. Exogenous Spm and Spd decreased the level of malondialdehyde, increased chlorophyll and proline contents, and modulated PSII activity in wheat seedlings under salt stress. Spermidine alleviated negative effects on CO2 assimilation induced by salt stress in addition to significantly increasing the activity and content of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). It appears Spd conferred salinity tolerance in wheat seedlings by enhancing photosynthetic capacity through regulation of gene expression and the activity of key CO2 assimilation enzymes. Exogenous Spm regulated activities of different antioxidant enzymes (catalase, glutathione reductase, dehydroascorbate reductase, ascorbate peroxidase, and superoxide dismutase) and efficiently modulate their transcription levels in wheat seedlings under salt stress. It is likely that Spm plays a key role in alleviating oxidative damage of salt stress by adjusting antioxidant enzyme activities in plants. In addition, exogenous Spd increased transcript level of spermine synthase under salt stress. Salinity stress also caused an increase in transcript levels of diamine oxidase (DAO) and polyamine oxidase (PAO). Exogenous Spd application resulted in a marked increase in free Spd and Spm contents under saline conditions. These results show that exogenous Spd and Spm effectively upregulated transcriptional levels of antioxidant enzyme genes and improved the defence response of plants under salt stress.


1998 ◽  
Vol 32 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Chong‐Kuei Lii ◽  
Yuh‐Jane Ko ◽  
Ming‐Tsai Chiang ◽  
Wei‐Che Sung ◽  
Haw‐Wen Chen

Sign in / Sign up

Export Citation Format

Share Document