EFFECTS OF ANAEROBIOSIS ON THE RATES OF MULTIPLICATION OF MAMMALIAN CELLS CULTURED IN VITRO

1960 ◽  
Vol 38 (1) ◽  
pp. 871-878 ◽  
Author(s):  
Samuel Dales

To test the effects of anaerobiosis on the rate of multiplication and carbohydrate metabolism of mammalian cells in vitro, cultures of a 'permanent' line, Earle's L strain cells, and of freshly explanted embryonic mouse cells were propagated in the presence and absence of oxygen. Contrary to the findings of several other investigators, our results show that the multiplication of both cell types was depressed by anaerobiosis. Anaerobiosis for at least 7 days, did not, however, bring about unbalanced growth in L cells, nor did it affect their capability to divide rapidly soon after they were returned to aerobic conditions. From the rates of glucose utilization, lactic acid production, and cell multiplication it was estimated that the rate of division in the two cell types studied was proportional to the energy which could be released from either glycolysis or complete oxidation of glucose.

1960 ◽  
Vol 38 (8) ◽  
pp. 871-878 ◽  
Author(s):  
Samuel Dales

To test the effects of anaerobiosis on the rate of multiplication and carbohydrate metabolism of mammalian cells in vitro, cultures of a 'permanent' line, Earle's L strain cells, and of freshly explanted embryonic mouse cells were propagated in the presence and absence of oxygen. Contrary to the findings of several other investigators, our results show that the multiplication of both cell types was depressed by anaerobiosis. Anaerobiosis for at least 7 days, did not, however, bring about unbalanced growth in L cells, nor did it affect their capability to divide rapidly soon after they were returned to aerobic conditions. From the rates of glucose utilization, lactic acid production, and cell multiplication it was estimated that the rate of division in the two cell types studied was proportional to the energy which could be released from either glycolysis or complete oxidation of glucose.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


1991 ◽  
Vol 3 (5) ◽  
pp. 571 ◽  
Author(s):  
JG Thompson ◽  
AC Simpson ◽  
PA Pugh ◽  
RW Wright ◽  
HR Tervit

Embryos were collected from superovulated donors at various intervals from onset of oestrus, ranging from Day 1.5 to Day 6. In addition, blastocysts obtained from the culture of 1-cell embryos collected in vivo or of oocytes matured and fertilized in vitro were used to assess the effects of in vitro manipulation and culture on glucose utilization. Glycolytic activity was determined by the conversion of [5-3H]glucose to 3H2O, and oxidation of glucose was determined by the conversion of [U-14C]glucose to 14CO2. Glucose utilization increases significantly from the 8-cell stage and during compaction and blastulation. Glucose oxidation was at a relatively low level (5-12% of total utilization) compared with glycolysis. No difference was observed between the glycolytic activity of blastocysts derived from in vivo or in vitro sources. However, glucose oxidation was lower (P less than 0.05) in blastocysts derived from the culture of 1-cell embryos or from oocytes matured and fertilized in vitro. Exogenous tricarboxylic acid cycle substrates (i.e. pyruvate and lactate supplied in the medium) affected the level of glucose oxidation.


Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1705-1718 ◽  
Author(s):  
J. Fontaine-Perus ◽  
V. Jarno ◽  
C. Fournier le Ray ◽  
Z. Li ◽  
D. Paulin

Chimeras were prepared by transplanting somites from 9-day post-coitum mouse embryos or somitic dermomyotomes from 10-day post-coitum mouse embryos into 2-day-old chick embryos at different axial levels. Mouse somitic cells then differentiated in ovo in dermis, cartilage and skeletal muscle as they normally do in the course of development and were able to migrate into chick host limb. To trace the behavior of somitic myogenic stem cells more closely, somites arising from mice bearing a transgene of the desmin gene linked to a reporter gene coding for Escherichia coli beta-galactosidase (lacZ) were grafted in ovo. Interestingly, the transgene was rapidly expressed in myotomal muscles derived from implants. In the limb muscle mass, positive cells were found several days after implantation. Activation of desmin nls lacZ also occurred in in vitro cultures of somite-derived cells. Our experimental method facilitates investigation of the mechanisms of mammalian development, allowing the normal fate of implanted mouse cells to be studied and providing suitable conditions for identification of descendants of genetically modified cells.


1973 ◽  
Vol 13 (3) ◽  
pp. 841-861
Author(s):  
YVONNE L. BOYD ◽  
H. HARRIS

Chinese hamster cells lacking inosinic acid pyrophosphorylase and mouse cells lacking thymidine kinase were fused with chick erythrocytes. The resultant heterokaryons were cultivated in a selective medium in which possession of these enzymes was essential for cell survival and growth. Clones of cells able to grow in this medium were isolated and studied. A detailed karyological analysis of these clones failed to reveal any chick chromosomes; nor could any chick-specific antigens be detected on the surface of the cells. Nonetheless, clones arising from the fusion of chick erythrocytes with Chinese hamster cells were shown to possess an inosinic acid pyrophosphorylase which had the electrophoretic characteristics of chick inosinic acid pyrophosphorylase. However, the clones arising from the fusion of the chick erythrocytes with the mouse cells had a thymidine kinase with the electrophoretic mobility and heat sensitivity of murine, not chick, thymidine kinase. Both types of hybrid cell have now been cultivated in vitro for 18 months without the loss of thymidine kinase or inosinic acid pyrophosphorylase activity.


1988 ◽  
Vol 8 (9) ◽  
pp. 3929-3933 ◽  
Author(s):  
K Tokunaga ◽  
K Takeda ◽  
K Kamiyama ◽  
H Kageyama ◽  
K Takenaga ◽  
...  

We described the structures of mouse cytoskeletal gamma-actin cDNA clones and showed that there is strong conservation of the untranslated regions with human gamma-actin cDNA. In addition, we found that the expression levels of beta- and gamma-actin mRNAs are differentially controlled in various mouse tissues and cell types but are coordinately increased in the cellular growing state. These results suggest that there are multiple regulatory mechanisms of cytoskeletal actin genes and are consistent with the argument that beta- and gamma-actins might have functional diversity in mammalian cells.


2003 ◽  
Vol 2003 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Lindsay J. Stanbridge ◽  
Vincent Dussupt ◽  
Norman J. Maitland

Current curative strategies for prostate cancer are restricted to the primary tumour, and the effect of treatments to control metastatic disease is not sustained. Therefore, the application of gene therapy to prostate cancer is an attractive alternative. Baculoviruses are highly restricted insect viruses, which can enter, but not replicate in mammalian cells. Baculoviruses can incorporate large amounts of extra genetic material, and will express transgenes in mammalian cells when under the control of a mammalian or strong viral promoter. Successful gene delivery has been achieved both in vitro and in vivo and into both dividing and nondividing cells, which is important since prostate cancers divide relatively slowly. In addition, the envelope protein gp64 is sufficiently mutable to allow targeted transduction of particular cell types. In this review, the advantages of using baculoviruses for prostate cancer gene therapy are explored, and the mechanisms of viral entry and transgene expression are described.


Blood ◽  
1966 ◽  
Vol 28 (2) ◽  
pp. 163-174 ◽  
Author(s):  
CARL J. HEDESKOV ◽  
VIGGO ESMANN

Abstract The metabolism of intact, normal, human lymphocytes in vitro was studied from a total of 80 subjects. Corrected for the metabolism of contaminating red blood cells, the glucose uptake, lactic acid production, and oxygen consumption were 62, 95, and 117 µmoles per 1010 lymphocytes per hour, respectively, provided the cells were incubated at concentrations greater than 40 x 106 lymphocytes per ml. At lower lymphocyte concentrations the oxygen consumption per lymphocyte rose steeply with decreasing cell concentration (crowding effect). A similar but weaker crowding effect was noted for the lactic acid production, but not for the utilization of glucose. The oxygen uptake was lower with 20 per cent than with 100 per cent oxygen as gas phase. Small Pasteur and Crabtree effects were demonstrated. The oxygen consumption and lactic acid production proceeded linear with time, while the glucose utilization was higher during the first 30 minutes of incubation than later on. It is concluded that lymphocytes have a low aerobic glycolysis accounting for 75 per cent of the glucose utilization. The respiration is severely inhibited at high cell concentrations and it is suggested that this is caused by an insufficient availability of oxygen to the cells.


1979 ◽  
Vol 80 (1) ◽  
pp. 150-165 ◽  
Author(s):  
M L Ledbetter ◽  
M Lubin

Mammalian cells of different species differ in sensitivity to ouabain. This sensitivity is expressed as reduced intracellular K+ content, reduced rates of protein synthesis, and cessation of cell multiplication. Using 86Rb+ as a measure of intracellular K+, we found higher levels of radioactivity in mixtures of ouabain-sensitive and -resistant cells cultured in the presence of ouabain than predicted from pure cultures of the two component cell types. The simplest explanation is that K+ and 86Rb+ are being transferred from ouabain-resistant to ouabain-sensitive cells, enhancing the total intracellular 86Rb+ in the culture. A function, "index of cooperation," expresses this enhancement as a number ranging from 0 to 1, and permits comparisons to be made under various culture conditions and using various cell types. An index of cooperation greater than 0 requires cell contact, since no enhancement occurs when contact between two cell types in the same culture is prevented. The index of cooperation for a number of different cell combinations agrees with other measures of cell-cell interaction associated with gap junctions, such as electrical coupling and metabolic cooperation. Coculture of ouabain-sensitive and ouabain-resistant cells in the presence of ouabain also leads to restoration of the capacity for protein synthesis. Autoradiography shows that this restoration occurs in the sensitive cell type and is dependent upon contact with ouabain-resistant cells. Furthermore, sensitive cells are able to multiply in the presence of ouabain when cocultured with resistant cells. Thus K+, presumably transferred to sensitive cells through gap junctions, is able to counteract the toxic effects of ouabain on intracellular K+ levels and protein synthesis, and to restore growth.


Sign in / Sign up

Export Citation Format

Share Document