STUDIES ON FACTORS INFLUENCING THE ACUTE TOXICITY OF MALATHION AND MALAOXON IN RATS

1967 ◽  
Vol 45 (4) ◽  
pp. 621-631 ◽  
Author(s):  
Jules Brodeur ◽  
K. P. DuBois

A study was undertaken to investigate the mechanisms responsible for the higher susceptibility of immature rats to the organophosphate insecticide malathion. In vitro measurements of the activity of malathionase in the tissues of rats, at various time intervals after birth, indicated that the livers of immature rats detoxify the insecticide at a much slower rate than do the livers of adult animals. Evidence was obtained which showed that prolonged administration of testosterone causes a significant increase of the enzymatic activity in the livers of castrated young male rats and adult female rats. On the other hand, castration interferes with the maintenance of normal levels of malathionase in adult males and partially prevents the development of the activity in weanlings. Estradiol decreases the enzymatic activity in adult males. It appears, therefore, that the age difference in the susceptibility of rats to malathion might be due, to a large extent, to a slower rate of inactivation of the insecticide by the livers of immature animals. The results obtained also indicate that the sex hormones play an important role in the development and maintenance of normal levels of the enzyme system involved in the degradation of malathion in the livers of rats.

1985 ◽  
Vol 249 (3) ◽  
pp. E276-E280 ◽  
Author(s):  
W. S. Evans ◽  
R. J. Krieg ◽  
E. R. Limber ◽  
D. L. Kaiser ◽  
M. O. Thorner

The effects of gender and the gonadal hormone environment on basal and stimulated growth hormone (GH) release by dispersed and continuously perifused rat anterior pituitary cells were examined. Cells from intact male and diestrus day 2 female rats and from castrate male rats either untreated or treated with testosterone (T) or 17 beta-estradiol (E2) were used. Basal GH release (ng/min per 10(7) cells; mean +/- SE) by cells from diestrus day 2 female rats was less than by cells from castrate rats treated with T (4.3 +/- 0.6 vs. 11.4 +/- 2.7, respectively; P less than 0.025). No other differences in basal release were detected. Concentration-response relationships were documented between human GH-releasing factor 40 (hGRF-40; 0.03-100 nM given as 2.5-min pulses every 27.5 min) and GH release. Mean (+/- SE) overall GH release (ng/min per 10(7) cells) above base line was greater by cells from intact male rats (496 +/- 92) than by cells from castrate (203 +/- 37.3; P less than 0.0001), castrate and T-treated (348 +/- 52.8; P = 0.008), or castrate and E2-treated (58.1 +/- 6.8; P less than 0.001) male rats or by diestrus day 2 rats (68.6 +/- 9.5; P = 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 318 (3) ◽  
pp. R567-R578 ◽  
Author(s):  
Susana Quirós Cognuck ◽  
Wagner L. Reis ◽  
Marcia S. Silva ◽  
Gislaine Almeida-Pereira ◽  
Lucas K. Debarba ◽  
...  

Maintenance of the volume and osmolality of body fluids is important, and the adaptive responses recruited to protect against osmotic stress are crucial for survival. The objective of this work was to compare the responses that occur in aging male and female rats during water deprivation. For this purpose, groups of male and female Wistar rats aged 3 mo (adults) or 18 mo (old) were submitted to water deprivation (WD) for 48 h. The water and sodium (0.15 M NaCl) intake, plasma concentrations of oxytocin (OT), arginine vasopressin (AVP), corticosterone (CORT), atrial natriuretic peptide (ANP), and angiotensin II (ANG II) were determined in hydrated and water-deprived animals. In response to WD, old male and female rats drank less water and saline than adults, and both adult and old females drank more water and saline than respective males. Dehydrated old animals displayed lower ANG II plasma concentration and CORT response compared with the respective normohydrated rats. Dehydrated adult males had higher plasma ANP and AVP as well as lower CORT concentrations than dehydrated adult females. Moreover, plasma OT and CORT levels of old female rats were higher than those in the dehydrated old male rats. Relative expression of ANG II type 1 receptor mRNA was decreased in the subfornical organ of adult and old male rats as well as adult female rats in response to WD. In conclusion, the study elucidated the effect of sex and age on responses induced by WD, altering the degree of dehydration induced by 48 h of WD.


1966 ◽  
Vol 44 (1) ◽  
pp. 95-101 ◽  
Author(s):  
J. R. Beaton ◽  
A. J. Szlavko ◽  
J. A. F. Stevenson

The effect of various factors on excretion of a lipid-mobilizing activity in FMS IA (anorexigenic) and in FMS IB (fat-mobilizing) by the fasting rat has been investigated. During fasting, the greatest excretion of such activity in FMS IA and FMS IB occurred in the first 24 hours and diminished thereafter up to 72 hours; and the specific activity of FMS IB was greatest in the first 24 hours whereas that of FMS IA was constant throughout. The hypothalamicobese rat excretes FMS IA and FMS IB in greater than normal amounts. The alloxan-diabetic rat excretes less total activity of FMS IA and IB than do control animals. Young male rats excrete greater amounts of FMS IB, but not of FMS IA, than do adult rats, the greatest excretion per 100 g body weight being observed at approximately 37 days of age. At 27 days of age (prepuberty), male rats excreted a greater total activity of FMS IB but not of FMS IA than did female rats. At 90 days of age (post-puberty), there was no apparent sex difference in the amount of total activity of FMS IB excreted per rat, but when expressed per 100 g body weight, females excreted more FMS IB than did males.


1955 ◽  
Vol 33 (1) ◽  
pp. 562-567
Author(s):  
John R. Beaton

Following earlier studies on carbohydrate metabolism in the vitamin-B6-deprived rat, in vitro investigations have been carried out. In all cases, comparisons were made between tissues from vitamin-B6-deprived and pair-fed control animals so that differences in the amount of food consumed would not affect the interpretation of experimental results. No significant difference was found in glucose utilization by muscle nor in liver cytochrome oxidase activity. Liver aldolase activity was significantly decreased and the activity of plasma alkaline phosphatase was significantly increased in the vitamin-B6-deprived rats. In vitamin-B6-deprived female rats, but not male rats, liver catalase activity was significantly increased. These results are discussed in the light of earlier observations indicating disturbances in carbohydrate metabolism in the vitamin-B6-deprived rat.


1960 ◽  
Vol 21 (2) ◽  
pp. 177-189 ◽  
Author(s):  
A. KORNER

SUMMARY 1. Microsomes, isolated from rat liver a day after adrenalectomy, incorporate more radioactive amino acid into their protein in vitro than microsomes from normal rat liver. This enhanced rate of incorporation progressively declines with time after adrenalectomy until it reaches a plateau level which is below the normal rate of incorporation. 2. Following adrenalectomy microsomes isolated from liver of male rats show a greater rise in incorporating ability than those from liver of female rats, and maintain it longer. 3. Most of the increased incorporation observed in the in vitro system soon after adrenalectomy of the rat, and most of the decreased incorporation observed in rats adrenalectomized for some time, results from alterations in the microsomes which change their ability to incorporate activated amino acids into proteins. 4. Treatment of rats with cortisol acetate results in an increase in the ability of liver microsomes to incorporate amino acid into protein. This heightened incorporating ability is probably a secondary result of the breakdown of extrahepatic tissue protein which is stimulated by cortisol. 5. Somewhat similar responses to acute adrenalectomy and to treatment with cortisol were found in hypophysectomized rats. 6. The protein anabolic response of adrenalectomized rats to treatment with insulin, and of adrenalectomized-hypophysectomized rats to treatment with insulin or growth hormone, is greater than that shown by rats which possess adrenal glands.


1978 ◽  
Vol 235 (6) ◽  
pp. E586 ◽  
Author(s):  
Z Naor ◽  
C P Fawcett ◽  
S M McCann

Anterior pituitary content of cyclic AMP (cAMP) and cyclic GMP (cGMP) has been measured during stimulation of gonadotropin release by luteinizing-hormone-releasing hormone (LHRH) in vitro to gain more information concerning the relationship between the mechanism of action of LHRH and cyclic nucleotides. During the increased gonadotropin release obtained by incubation by hemipituitaries with LHRH (0.25--25 X 10(-9) M) for 180 min, the glands taken from both male and female rats exhibited increased cGMP content, whereas cAMP content rose only in those taken from male rats. The increase in cGMP content was observed after only 2 min in the presence of LHRH (5 X 10(-9) M) and prior to augmented gonadotropin release. The increase in cAMP content in the male glands was detectable only after 60 min of incubation. These results suggest that cGMP might be involved in the mechanism of action of LHRH.


1986 ◽  
Vol 251 (5) ◽  
pp. H885-H889 ◽  
Author(s):  
J. St-Louis ◽  
A. Parent ◽  
R. Lariviere ◽  
E. L. Schiffrin

The effect of treatment with estrogens on the biological activity of arginine8 vasopressin (AVP) in the in vitro perfused mesenteric vascular bed and on the binding characteristics of [3H]AVP on membranes prepared from the same vascular bed was studied. Female rats treated with estradiol (400 micrograms/24 h sc), compared with ovariectomized rats, had an increase in the maximum response to AVP (from 128 +/- 3 to 153 +/- 3 mmHg) in the perfused preparation and an increase in the density of AVP binding sites (from 402 to 732 fmol/mg protein) in the membrane preparation. In male rats, the injection of estradiol increased the maximum response to AVP (from 109 +/- 4 to 137 +/- 3 mmHg) and the density of AVP binding sites (from 289 to 519 fmol/mg protein). The effective concentration producing 50% of maximum response of AVP in the perfused preparation was higher in male than in female rats, while the Kd in the binding experiments was similar in the four experimental groups. Our results show that estrogens upregulate the number of AVP binding sites, leading to an increase in the pressor response to AVP in the rat mesenteric vascular bed.


2014 ◽  
Vol 307 (4) ◽  
pp. H504-H514 ◽  
Author(s):  
K. Tarhouni ◽  
M. L. Freidja ◽  
A. L. Guihot ◽  
E. Vessieres ◽  
L. Grimaud ◽  
...  

In resistance arteries, a chronic increase in blood flow induces hypertrophic outward remodeling. This flow-mediated remodeling (FMR) is absent in male rats aged 10 mo and more. As FMR depends on estrogens in 3-mo-old female rats, we hypothesized that it might be preserved in 12-mo-old female rats. Blood flow was increased in vivo in mesenteric resistance arteries after ligation of the side arteries in 3- and 12-mo-old male and female rats. After 2 wk, high-flow (HF) and normal-flow (NF) arteries were isolated for in vitro analysis. Arterial diameter and cross-sectional area increased in HF arteries compared with NF arteries in 3-mo-old male and female rats. In 12-mo-old rats, diameter increased only in female rats. Endothelial nitric oxide synthase expression and endothelium-mediated relaxation were higher in HF arteries than in NF arteries in all groups. ERK1/2 phosphorylation, NADPH oxidase subunit expression levels, and arterial contractility to KCl and to phenylephrine were greater in HF vessels than in NF vessels in 12-mo-old male rats only. Ovariectomy in 12-mo-old female rats induced a similar pattern with an increased contractility without diameter increase in HF arteries. Treatment of 12-mo-old male rats and ovariectomized female rats with hydralazine, the antioxidant tempol, or the angiotensin II type 1 receptor blocker candesartan restored HF remodeling and normalized arterial contractility in HF vessels. Thus, we found that FMR of resistance arteries remains efficient in 12-mo-old female rats compared with age-matched male rats. A balance between estrogens and vascular contractility might preserve FMR in mature female rats.


1961 ◽  
Vol 36 (4) ◽  
pp. 485-497 ◽  
Author(s):  
G. P. van Rees

ABSTRACT The hypothesis that steroid sex hormones influence pituitary F. S. H. by independent actions on its production and capacity of the gland to release it has been investigated by means of incubation experiments. During incubation, rat pituitary glands released considerable amounts of F. S. H. into the medium. Inactivation of F. S. H. during incubation could not be demonstrated; once (in females) some production of F. S. H. was even observed. The amount of F. S. H. which is released into the medium is influenced by the quantity of F. S. H. stored in the hypophyses. Hypophyses from male rats pretreated with oestradiol released relatively more F. S. H. into the medium than hypophyses from control animals. On the other hand, pretreatment with testosterone caused the pituitary glands to release less F. S. H. into the medium. In agreement with these results, hypophyses from intact male rats released relatively less F. S. H. than hypophyses from intact female rats. These facts support the hypothesis that androgens depress pituitary F. S. H.-secretion by inhibiting the capacity to release it, while oestrogens, which can even promote this property of the pituitary gland, also act by directly inhibiting its production.


1988 ◽  
Vol 116 (1) ◽  
pp. 43-53 ◽  
Author(s):  
M. Laudon ◽  
Z. Yaron ◽  
N. Zisapel

ABSTRACT N-(3,5-dinitrophenyl)-5-methoxytryptamine (ML-23) has recently been synthesized and shown to antagonize the inhibitory effect of melatonin on the release of dopamine in vitro from the hypothalamus of female rats. In the present study the ability of ML-23 to inhibit in vivo the following melatonin-mediated effects was investigated: (1) delayed sexual maturation of young male rats, (2) delayed sexual maturation of young female rats, (3) inhibition of ovulation in mature female rats and (4) re-establishment of oestrous cycles in adult female rats maintained in continuous light. The inhibitory effect of daily melatonin injections, given in the afternoon, on the growth of the prostate gland and seminal vesicles and on serum testosterone concentrations in young male rats was prevented by daily injections of ML-23. Daily injections of ML-23 alone did not affect sexual maturation of young rats. In young male rats treated through the drinking water with melatonin, the growth of the accessory sex organs, but not that of the testes, was delayed and serum concentrations of testosterone were lower than in untreated rats. Administration of ML-23 through the drinking water increased serum concentrations of testosterone but did not significantly affect the weights of the accessory sex organs. Simultaneous administration of ML-23 and melatonin through the drinking water prevented completely, in a dose-dependent manner, the melatonin-mediated decrease in epididymal weights and in serum concentrations of testosterone and partially inhibited the delayed growth of the prostate glands and seminal vesicles. In young female rats treated with melatonin through the drinking water for 30 days, the growth of the ovaries was inhibited and serum concentrations of oestradiol were lower than in untreated rats. The growth of the uterus was not significantly affected. Administration of ML-23 through the drinking water did not significantly affect uterine and ovarian weights or oestradiol concentrations. Simultaneous administration of melatonin and ML-23 through the drinking water prevented completely the melatonin-mediated decrease in ovarian weights and in serum oestradiol concentrations. Ovulation during presumptive oestrus was prevented in adult female rats treated through the drinking water for 7 days with melatonin. Administration of ML-23 alone did not significantly affect the average numbers of ova shed and corpora lutea present. Simultaneous administration of ML-23 and melatonin prevented completely the melatonin-mediated inhibition of ovulation; the average number of ova shed was the same as in controls. Suppression of reproductive cycles occurred in adult female rats after long-term exposure to continuous light. This suppression was prevented by daily injections of melatonin in the afternoon; the incidence of constant oestrus decreased by 80%. Simultaneous injection of ML-23 and melatonin into rats maintained under continuous illumination prevented the effect of melatonin, and all the animals remained in constant oestrus. Administration of ML-23 alone did not alter the incidence of constant oestrus. A tritium-labelled derivative of ML-23 was prepared and administered orally to male rats. Peak concentrations of ML-23 occurred in the blood within 30 min after feeding and disappeared subsequently with a half-life of about 42 min. Intraperitoneal injection of [3H]ML-23 resulted in the appearance of peak concentrations of the drug in the brain within 20 min. The effects of ML-23 on serotonin S1 and S2 receptors, dopamine D2 receptors and melatonin receptors in the brain of the male rat were investigated using [3H]serotonin, [3H]spiperone and 2-[125I]iodomelatonin respectively. The binding of [3H]serotonin to brain synaptosomes and of [3H]spiperone to synaptosomes prepared from the cortical and caudate regions of the cerebrum was unaffected by ML-23 (10 μmol/l), whereas the binding of 2-[125I]iodomelatonin to brain synaptosomes was entirely inhibited. The results demonstrate the potency of ML-23 in antagonizing melatonin-mediated effects in the male and female rat in vivo. The drug may be administered to the animals simply through the drinking water, for relatively long periods without apparent deleterious effects on survival and welfare. ML-23 is accessible to both central and peripheral sites and acts specifically on melatonin but not on serotonin or dopamine receptors in the brain. The availability of a melatonin antagonist offers new opportunities for exploring the physiological role of melatonin in the neuroendocrine system. J. Endocr. (1988) 116, 43–53


Sign in / Sign up

Export Citation Format

Share Document