Seasonal energy requirements of wapiti (Cervus elaphus) for maintenance and growth

1994 ◽  
Vol 74 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Z. Jiang ◽  
R. J. Hudson

Seasonal energy intakes of 6- to 14-mo-old wapiti hinds were determined in energy balance trials under pen and field conditions in winter, spring and summer. Six animals grazed native pastures supplemented with alfalfa hay when pasture availability declined in winter. Another six were penned and fed alfalfa-barley pellets to maximize growth throughout the year. Season and diet-specific metabolizable energy requirements for maintenance and liveweight gain were determined from regression of metabolizable energy intake on gain. Daily maintenance requirements of penned wapiti ranged from (mean ± SE) 473 ± 35 kJ kg−0.75 in winter to 728 ± 78 kJ kg−0.75 in summer. On spring and summer pasture, daily ecological maintenance requirements ranged from 900 ± 26 to 984 ± 37 kJ kg−0.75. Energy requirements for gain were the same in pen and field trials, ranging from 25 ± 6 to 33 ± 5 kJ g−1 in winter and from 40 ± 6 to 43 ± 12 kJ g−1 in spring and summer. This study provides basic information on the metabolizable energy needs of wapiti and insights into how their seasonal requirements can be optimally met. Key words: Elk, metabolizable energy requirement, growth, physiological maintenance, ecological maintenance, seasonality, energy balance

1990 ◽  
Vol 63 (2) ◽  
pp. 155-163 ◽  
Author(s):  
C. Prieto ◽  
J. F. Aguilera ◽  
L. Lara ◽  
J. FonollÁ

Sixteen adult castrated male goats of the Granadina breed, with initial live weights ranging from 26.0 to 33.3 kg were used in two experiments to determine their protein and energy requirements for maintenance. Digestibility, nitrogen and energy balance measurements were made during the experiments. Two diets, which were based on pelleted lucerne (Medicago sativa) hay alone or on this forage and barley, were individually given at about maintenance level once daily. Gas exchange was measured using open-circuit respiration chambers. Fasting heat production was also determined. By regression analysis endogenous urinary N and maintenance requirements for N were estimated to be 119 mg/kg body-weight (W)0.75 per d and 409 mg total N/kg W0.75 per d respectively. Fasting heat production was 324 kJ/kg W0.75. The energy requirement for maintenance was calculated by regression of energy balance on metabolizable energy (ME) intake and a value of 443 kJ/kg W0.75 per d was found. The overall efficiency of utilization of ME for maintenance was 0.73.


1975 ◽  
Vol 33 (2) ◽  
pp. 127-139 ◽  
Author(s):  
B. R. Patle ◽  
V. D. Mudgal

1. Twenty-seven energy and protein balances were done using nine cross-bred (Brown Swiss × Sahiwal) mature bullocks in a series of three balance trials. The bullocks were fed 75, 100 and 125 % of the metabolizable energy (ME) and digestible crude protein standard values recommended by the (US) National Research Council (1966). Heat production was estimated by indirect calorimetry, by collection and analysis of respiratory gases2. Utilization of energy for maintenance and fat production was estimated by computing regression of energy balance v. digestible energy (DE) and ME separately on a metabolic body size (kg body-weight (W)0·75) basis. Maintenance energy requirements and efficiency of utilization of ME for lipogenesis were estimated using multiple regression of ME intake, also. Heat production (and thus energy balance) was corrected for excess nitrogen intake3. An attempt was made to measure basal heat production of bullocks so that the net energy requirements for maintenance could be estimated. Extrapolation of the regression line of energy balance v. ME intake below maintenance on a W0·75 basis gave a basal metabolism of 348·09 kJ/W0·75 per d4. Energy requirements for maintenance were (kJ/kg W0·75 per d): 539·43 DE, 448·81 ME and 348·09 net energy. The results of multiple regression gave a requirement of 432·15 kJ ME/kg W0·75 per d for maintenance5. The efficiency of utilization of ME for maintenance was 81·34% while for lipogenesis it was 54·5 %.


2004 ◽  
Vol 142 (6) ◽  
pp. 691-695 ◽  
Author(s):  
H. DARMANI KUHI ◽  
E. KEBREAB ◽  
S. LOPEZ ◽  
J. FRANCE

The suitability of models specifically re-parameterized for analyzing energy balance data relating metabolizable energy intake to growth rate has recently been investigated in male broilers. In this study, the more adequate of those models was applied to growing turkeys to provide estimates of their energy needs for maintenance and growth. Three functional forms were used. They were: two equations representing diminishing returns behaviour (monomolecular and rectangular hyperbola); and one equation describing smooth sigmoidal behaviour with a fixed point of inflexion (Gompertz). The models estimated the metabolizable energy requirement for maintenance in turkeys to be 359–415 kJ/kg of live-weight/day. The predicted values of average net energy requirement for producing 1 g of gain in live-weight, between 1 and 4 times maintenance, varied from 8·7 to 10·9 kJ. These results and those previously reported for broilers are a basis for accepting the general validity of these models.


1979 ◽  
Vol 29 (3) ◽  
pp. 339-355 ◽  
Author(s):  
Pamela A Geisler ◽  
C. Merryl Jones

ABSTRACTA computer program is described which allows the calculation throughout pregnancy of the energy requirements of a ewe of any weight carrying any number of foetuses. The calculations rely on a prediction of potential lamb birth weight, from which a foetal growth curve of weight against time from conception is generated. Tied to the foetal growth curve are the growths of the placenta and fluids, while growth of the uterus is related to the ewe's weight at mating. Weights are converted to energy through energy density curves applicable through pregnancy for each component. An efficiency factor converts this energy requirement into a metabolizable energy requirement. With assumptions on the maintenance requirements for the ewe-foetus system, the total requirement for energy during pregnancy is calculated.Predictions from the model are compared with other estimates of energy requirements available in the literature. The sensitivity of the predictions of energy requirements for the pregnant ewe to variations in the assumptions made in the construction of the model is discussed. The most important assumptions are those on the maintenance requirements for the ewe-foetus system. Effects on the predicted energy requirements of varying either the efficiency for foetal growth or the gestation length are also discussed.


Rangifer ◽  
1996 ◽  
Vol 16 (1) ◽  
pp. 41 ◽  
Author(s):  
Normand Cool ◽  
Robert J. Hudson

Energy requirements of moose (Alces alces) and wapiti (Cervus elaphus) calves were compared from December to February to determine whether metabolic requirements were lower in a boreal-adapted than in a parkland-adapted wild cervid. Eight calves of each species were divided equally into groups given high or low quality diets. Regression of metabolizable energy intake on liveweight gain provided estimates for maintenance and gain, Metabolizable energy requirements for liveweight maintenance were 560 kj/kg0.75.d and for gain were 27 kj/g. Neither value was significantly different between moose and wapiti nor between genders within species. This similariry in winter metabolism and consistency with the interspecies mean suggests that winter metabolic dormancy is not necessarily an important part of a seasonal energetic strategy. The main difference was that moose calves maintained appetite and continued to grow throughout the winter.


1987 ◽  
Vol 45 (3) ◽  
pp. 345-348 ◽  
Author(s):  
E. R. Ørskov ◽  
G. W. Reid ◽  
C. A. G. Tait

ABSTRACTThirty-two Friesian cows in early lactation were divided into four treatment groups to receive ad libitum a mixed diet consisting of silage (0·70) and grain-based concentrate (0·30). Fish meal was subsequently mixed into the diet at levels of 0, 40, 80 and 120 g/kg to provide crude protein concentration (g/kg dry matter) in the complete diets of 156, 181, 200 and 212 respectively. In the 2nd week after calving the yields of fat-corrected milk (FCM) were 28·5, 29·2, 32·0 and 34·9 kg/day for the four levels respectively; at this time, food intake was sufficient only to meet the calculated energy requirement for 15 kg FCM per day. Due to recurring problems with ketosis on the diet containing 120 g fish meal per kg, this treatment was terminated and the experiment continued for 15 weeks with the groups receiving 0, 40 and 80 g/kg fish meal supplements. During this time average yields of FCM were 23·5, 25·6 and 28-0 kg FCM per day respectively and energy intakes were calculated to be sufficient to meet the requirement for 18 kg FCM per day.It appeared possible to increase milk yield by stimulating fat mobilization through giving undegraded protein supplements to underfed cows in early lactation. However, when an excessive mobilization occurred with a high supplement, and when the animals were yielding 15 to 20 kg FCM more than their metabolizable energy intake was calculated to sustain, some cows became ketotic.


1972 ◽  
Vol 14 (1) ◽  
pp. 17-23 ◽  
Author(s):  
C. A. Zulberti ◽  
J. T. Reid

SUMMARYBased on the Agricultural Research Council's feeding system, equations were developed that allow the calculation of the metabolizable energy requirements for maintenance and weight gain by cattle, separately or combined. A general equation was developed for the straight-forward calculation of the total metabolizable energy requirements of growing and fattening cattle for any combination of body weight, rate of weight gain, age, level of muscular work, and metabolizable energy concentration of the diet. The estimates of energy requirement made by the use of this equation are in excellent agreement with those made by the Agricultural Research Council using an iterative method.In addition to avoiding the awkward iterative process, the equations proposed are readily adaptable to computer use.


1989 ◽  
Vol 67 (9) ◽  
pp. 994-998 ◽  
Author(s):  
Peter J. H. Jones

The comparative effects of feeding diets containing corn, olive, coconut, or menhaden fish oil on efficiency of energy deposition and on short term energy expenditure were examined in growing hamsters. Diets comprising oils mixed with laboratory diets at 10% oil w/w were fed ad libitum for 3 weeks. Animals fed laboratory diets were used as controls. Body composition was determined before and after the feeding period using 3H2O distribution space. Oxygen consumption was measured in each animal during the final week. Weight gains of groups fed corn and olive oil diets exceeded those of the group fed laboratory diet alone (p < 0.05), although metabolizable energy intakes were similar across groups. Corn oil fed animals demonstrated higher carcass energy gains as fat compared with laboratory diet fed or menhaden oil fed groups. This was reflected in an increased fractional deposition of metabolizable energy intake in the group fed corn oil diet compared with the latter two groups. Fecal energy losses were lower in the group fed corn oil diet, and higher in the group fed laboratory diet alone, compared with other groups. Oxygen consumption did not differ between groups. These findings indicate that feeding dietary fish oil, compared with corn oil, favours energy substrate oxidation reducing the fraction of metabolizable energy partitioned for storage.Key words: energy balance, energy expenditure, dietary fatty acids, hamster.


2002 ◽  
Vol 138 (2) ◽  
pp. 221-226 ◽  
Author(s):  
A. ALLAN DEGEN ◽  
B. A. YOUNG

Body mass was measured and body composition and energy requirements were estimated in sheep at four air temperatures (0 °C to 30 °C) and at four levels of energy offered (4715 to 11785 kJ/day) at a time when the sheep reached a constant body mass. Final body mass was affected mainly by metabolizable energy intake and, to a lesser extent, by air temperature, whereas maintenance requirements were affected mainly by air temperature. Mean energy requirements were similar and lowest at 20 °C and 30 °C (407·5 and 410·5 kJ/kg0·75, respectively) and increased with a decrease in air temperature (528·8 kJ/kg0·75 at 10 °C and 713·3 kJ/kg0·75 at 0 °C). Absolute total body water volume was related positively to metabolizable energy intake and to air temperature. Absolute fat, protein and ash contents were all affected positively by metabolizable energy intake and tended to be related positively to air temperature. In proportion to body mass, total body water volume decreased with an increase in metabolizable energy intake and with an increase in air temperature. Proportionate fat content increased with an increase in metabolizable energy intake and tended to increase with an increase in air temperature. In contrast, proportionate protein content decreased with an increase in metabolizable energy intake and tended to decrease with an increase in air temperature. In all cases, the multiple linear regression using both air temperature and metabolizable energy intake improved the fit over the simple linear regressions of either air temperature or metabolizable energy intake and lowered the standard error of the estimate. The fit was further improved and the standard error of the estimate was further lowered using a polynomial model with both independent variables to fit the data, since there was little change in the measurements between 20 °C and 30 °C, as both air temperatures were most likely within the thermal neutral zone of the sheep. It was concluded that total body energy content, total body water volume, fat and protein content of sheep of the same body mass differed or tended to differ when kept at different air temperatures.


1984 ◽  
Vol 39 (2) ◽  
pp. 305-309 ◽  
Author(s):  
C. L. Ferrell ◽  
T. G. Jenkins

ABSTRACTMature Angus (A), Hereford (H) and Simmental (S) cows (16 each) that had been randomly assigned and fed a maize silage-based diet at different levels of intake during lactation were selected.Lean and fat A, H and S cows were fed the maize silage-based diet individually to provide metabolizable energy (ME) intakes of 542, 506; 476, 437; and 624, 597 kj/kg0.75 per day respectively for 84 days. Daily weight gains of lean cows were greater than those of fat cows (0·40 v. 0·11 kg/day) even though daily ME intakes were less (55·2 v. 62·4 MJ/day). Theoretical estimates of ME requirements for maintenance were less for lean than for fat cows, and maintenance of A and H cows tended to be less than those of S cows.These results suggest that cow maintenance requirements increased in association with fatness that resulted from the previously imposed nutritional regimes and tended to differ among cow breeds.


Sign in / Sign up

Export Citation Format

Share Document