Modulation of amino acid neurotransmitter actions by other neurotransmitters: some examples

1991 ◽  
Vol 69 (7) ◽  
pp. 1115-1122 ◽  
Author(s):  
Kenneth C. Marshall ◽  
Huangui Xiong

Developments in the field of central neurotransmission indicate that amino acids serve as important and widespread transmitters throughout the central nervous system. There are increasing indications from recent experimental studies that several of the other central neurotransmitters may exert potent effects on central neurons by modulating the actions of amino acids. Noradrenaline and serotonin have received particular attention as potential modulators, and a wide variety of actions has been reported for them. Modulatory actions have been reported at both pre- and post-synaptic levels, including both short- and long-term effects and facilitation or inhibition of amino acid actions. Selectivity has been found both for specific receptor subtypes of the neuromodulator and for specific effects of amino acids. Examples of such selectivity are modification of actions of an amino acid with little effect on spontaneous activity or membrane properties of the target cell, or in comparison to the actions of other neurotransmitters, or even other selective amino acid analogs. Modulatory actions on amino acids have also been reported for several other neurotransmitters including acetylcholine and various peptides. Recent studies of angiotensin II demonstrate that when iontophoretically applied, it can potently and selectively block the depolarizing action of glutamate on locus coeruleus neurons. It is possible that physiological influences of these various transmitter substances are expressed through modification of amino acid actions, rather than through direct effects on central neurons.Key words: neuromodulation, neurotransmitters, glutamic acid, noradrenaline, angiotensin II.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 118-119
Author(s):  
Teresa A Davis ◽  
Marko Rudar ◽  
Jane Naberhuis ◽  
Agus Suryawan ◽  
Marta Fiorotto

Abstract Livestock animals are important dual-purpose models that benefit both agricultural and biomedical research. The neonatal pig is an appropriate model for the human infant to assess long-term effects of early life nutrition on growth and metabolic outcomes. Previously we have demonstrated that prematurity blunts the feeding-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs. The objective of this study was to determine whether reduced sensitivity to insulin and/or amino acids drives this blunted response. Pigs were delivered by caesarean section at preterm (PT, 103 d gestation) or at term (T, 112 d gestation) and fed parenterally for 4 d. On day 4, pigs were subject to euinsulinemic-euaminoacidemic-euglycemic (FAST), hyperinsulinemic-euaminoacidemic-euglycemic (INS), or euinsulinemic-hyperaminoacidemic-euglycemic (AA) clamps for 120 min, yielding six treatments: PT-FAST (n = 7), PT-INS (n = 9), PT-AA (n = 9), T-FAST (n = 8), T-INS (n = 9), and T-AA (n = 9). A flooding dose of L-[4-3H]Phe was injected into pigs 30 min before euthanasia. Birth weight and relative body weight gain were lower in PT than T pigs (P < 0.001). Plasma insulin concentration was increased from ~3 to ~100 µU/mL in INS compared to FAST and AA pigs (P < 0.001); plasma BCAA concentration was increased from ~250 to ~1,000 µmol/L in AA compared to FAST and INS pigs (P < 0.001). Despite achieving similar insulin and amino acid levels, longissimus dorsi AKT phosphorylation, mechanistic target of rapamycin (mTOR)·Rheb abundance, mTOR activation, and protein synthesis were lower in PT-INS than T-INS pigs (Table 1). Although amino-acid induced dissociation of Sestrin2 from GATOR2 was not affected by prematurity, mTOR·RagA abundance, mTOR·RagC abundance, mTOR activation, and protein synthesis were lower in PT-AA than T-AA pigs. The impaired capacity of premature skeletal muscle to respond to insulin or amino acids and promote protein synthesis likely contributes to reduced lean mass accretion. Research was supported by NIH and USDA.


1971 ◽  
Vol 123 (1) ◽  
pp. 57-67 ◽  
Author(s):  
P. R. Carnegie

Myelin from the central nervous system contains an unusual basic protein, which can induce experimental autoimmune encephalomyelitis. The basic protein from human brain was digested with trypsin and other enzymes and the sequence of the 170 amino acids was determined. The localization of the encephalitogenic determinants was described. Possible roles for the protein in the structure and function of myelin are discussed.


1999 ◽  
Vol 13 (4) ◽  
pp. 578-586 ◽  
Author(s):  
Stéphane A. Laporte ◽  
Antony A. Boucard ◽  
Guy Servant ◽  
Gaétan Guillemette ◽  
Richard Leduc ◽  
...  

Abstract To identify ligand-binding domains of Angiotensin II (AngII) type 1 receptor (AT1), two different radiolabeled photoreactive AngII analogs were prepared by replacing either the first or the last amino acid of the octapeptide by p-benzoyl-l-phenylalanine (Bpa). High yield, specific labeling of the AT1 receptor was obtained with the 125I-[Sar1,Bpa8]AngII analog. Digestion of the covalent 125I-[Sar1,Bpa8]AngII-AT1 complex with V8 protease generated two major fragments of 15.8 kDa and 17.8 kDa, as determined by SDS-PAGE. Treatment of the[ Sar1,Bpa8]AngII-AT1 complex with cyanogen bromide produced a major fragment of 7.5 kDa which, upon further digestion with endoproteinase Lys-C, generated a fragment of 3.6 kDa. Since the 7.5-kDa fragment was sensitive to hydrolysis by 2-nitro-5-thiocyanobenzoic acid, we circumscribed the labeling site of 125I-[Sar1,Bpa8]AngII within amino acids 285 and 295 of the AT1 receptor. When the AT1 receptor was photolabeled with 125I-[Bpa1]AngII, a poor incorporation yield was obtained. Cleavage of the labeled receptor with endoproteinase Lys-C produced a glycopeptide of 31 kDa, which upon deglycosylation showed an apparent molecular mass of 7.5 kDa, delimiting the labeling site of 125I-[Bpa1]AngII within amino acids 147 and 199 of the AT1 receptor. CNBr digestion of the hAT1 I165M mutant receptor narrowed down the labeling site to the fragment 166–199. Taken together, these results indicate that the seventh transmembrane domain of the AT1 receptor interacts strongly with the C-terminal amino acid of[ Sar1, Bpa8]AngII, whereas the N-terminal amino acid of[ Bpa1]AngII interacts with the second extracellular loop of the AT1 receptor.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Ami Khanal Lamichhane ◽  
H. Martin Garraffo ◽  
Hongyi Cai ◽  
Peter J. Walter ◽  
Kyung J. Kwon-Chung ◽  
...  

ABSTRACT We found a novel role of Myo5, a type I myosin (myosin-I), and its fortuitous association with d-amino acid utilization in Cryptococcus gattii. Myo5 colocalized with actin cortical patches and was required for endocytosis. Interestingly, the myo5Δ mutant accumulated high levels of d-proline and d-alanine which caused toxicity in C. gattii cells. The myo5Δ mutant also accumulated a large set of substrates, such as membrane-permeant as well as non-membrane-permeant dyes, l-proline, l-alanine, and flucytosine intracellularly. Furthermore, the efflux rate of fluorescein was significantly increased in the myo5Δ mutant. Importantly, the endocytic defect of the myo5Δ mutant did not affect the localization of the proline permease and flucytosine transporter. These data indicate that the substrate accumulation phenotype is not solely due to a defect in endocytosis, but the membrane properties may have been altered in the myo5Δ mutant. Consistent with this, the sterol staining pattern of the myo5Δ mutant was different from that of the wild type, and the mutant was hypersensitive to amphotericin B. It appears that the changes in sterol distribution may have caused altered membrane permeability in the myo5Δ mutant, allowing increased accumulation of substrate. Moreover, myosin-I mutants generated in several other yeast species displayed a similar substrate accumulation phenotype. Thus, fungal type I myosin appears to play an important role in regulating membrane permeability. Although the substrate accumulation phenotype was detected in strains with mutations in the genes involved in actin nucleation, the phenotype was not shared in all endocytic mutants, indicating a complicated relationship between substrate accumulation and endocytosis. IMPORTANCE Cryptococcus gattii, one of the etiological agents of cryptococcosis, can be distinguished from its sister species Cryptococcus neoformans by growth on d-amino acids. C. gattii MYO5 affected the growth of C. gattii on d-amino acids. The myo5Δ cells accumulated high levels of various substrates from outside the cells, and excessively accumulated d-amino acids appeared to have caused toxicity in the myo5Δ cells. We provide evidence on the alteration of membrane properties in the myo5Δ mutants. Additionally, alteration in the myo5Δ membrane permeability causing higher substrate accumulation is associated with the changes in the sterol distribution. Furthermore, myosin-I in three other yeasts also manifested a similar role in substrate accumulation. Thus, while fungal myosin-I may function as a classical myosin-I, it has hitherto unknown additional roles in regulating membrane permeability. Since deletion of fungal myosin-I causes significantly elevated susceptibility to multiple antifungal drugs, it could serve as an effective target for augmentation of fungal therapy.


1997 ◽  
Vol 17 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Michael Jones ◽  
Roberto Kalil ◽  
Peter Blake ◽  
Leo Martis ◽  
Dimitrios G. Oreopoulos

Objective Some patients develop a mild acidemia during treatment with amino acid-based peritoneal dialysis solutions due to hydrogen ion produced by metabolism of lysine, arginine, and methionine. In this study we modified the formulation of such a solution by reducing these amino acids and adding anionic amino acids so as to provide minimal net acid production. Design A modified formula (MF) was compared to a conventional formula (CF) of the solution in a randomized crossover study in 12 stable continuous ambulatory peritoneal dialysis patients. Patients were given each solution for 14 days without a wash-out period. Each patient replaced one or two dextrose dialysis exchanges with amino acid solution, depending upon oral protein intake and body weight. Total intake (oral protein plus amino acids absorbed) was equivalent to 1.1 -1.3 g protein/kg body weight/day.Plasma bicarbonate and urea were assessed at the beginning and end of each 14-day period. Results In the group as a whole, without regard to the order in which the solutions were given, patients had a decrease in serum bicarbonate with CF and an increase in bicarbonate when they received MF. Similar trends were observed regardless of the order in which the solutions were administered. Serum urea did not differ between the two solutions. Conclusion The results suggest that patients are less prone to develop acidemia when receiving MF as opposed to CF. Further studies will be necessary to determine the long-term effects and the relative nutritional benefits of the two solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Hossein Ali Ebrahimi ◽  
Saeed Ebrahimi

Introduction. Epilepsy is one of the most common diseases of the central nervous system. The prevalence of epilepsy throughout the world is 0.5 to 1%, and the same rate is 7.8 per 1000 in Kerman. Almost 20 to 30% of epileptic patients do not respond properly to common medications. The present study investigated patients who did not respond to common and, even in some cases, adjuvant therapies, with two seizures or more per week, regardless of the type of the inflicted epilepsy.Methodology. The participants of the present double-blind study were randomly selected into three 10-member groups of uncontrolled epileptic patients (arginine, glutamic acid, and lysine). The patients used amino acid powder dissolved in water (three times the daily need) every day for two weeks before breakfast. The number of seizures was recorded one week prior to commencing amino acid use, as well as the first and the second weeks subsequent to use.Results. A total of 32 patients were studied in three groups. The decline rates of seizures were 53%, 41%, and 13%, and thePvalue was 0.013, 0.027, and 0.720, respectively.Conclusion. Administration of the charged amino acids, arginine, and glutamic acid can decrease the seizures of patients suffering from uncontrolled epilepsy.


Author(s):  
John H. Weiss ◽  
Dennis W. Choi

ABSTRACT:Neurodegenerative diseases are characterized by selective degeneration of certain biochemically distinct subpopulations of central neurons. Studies of the intrinsic vulnerability of such neurons to injury by excitatory amino acids in vitro, as well as study of neurologic syndromes produced in animals or humans by ingestion of environmental excitatory amino acid neurotoxins may suggest a link between excitotoxicity, and the pathogenesis of certain neurodegenerative diseases.


1998 ◽  
Vol 12 (10) ◽  
pp. 1513-1524 ◽  
Author(s):  
Walter G. Thomas ◽  
Thomas J. Motel ◽  
Christopher E. Kule ◽  
Vijay Karoor ◽  
Kenneth M. Baker

Abstract The molecular mechanism of angiotensin II type I receptor (AT1) endocytosis is obscure, although the identification of an important serine/threonine rich region (Thr332Lys333Met334Ser335Thr336Leu337Ser338) within the carboxyl terminus of the AT1A receptor subtype suggests that phosphorylation may be involved. In this study, we examined the phosphorylation and internalization of full-length AT1A receptors and compared this to receptors with truncations and mutations of the carboxyl terminus. Epitope-tagged full-length AT1A receptors, when transiently transfected in Chinese hamster ovary (CHO)-K1 cells, displayed a basal level of phosphorylation that was significantly enhanced by angiotensin II (Ang II) stimulation. Phosphorylation of AT1A receptors was progressively reduced by serial truncation of the carboxyl terminus, and truncation to Lys325, which removed the last 34 amino acids, almost completely inhibited Ang II-stimulated 32P incorporation into the AT1A receptor. To investigate the correlation between receptor phosphorylation and endocytosis, an epitope-tagged mutant receptor was produced, in which the carboxyl-terminal residues, Thr332, Ser335, Thr336, and Ser338, previously identified as important for receptor internalization, were substituted with alanine. Compared with the wild-type receptor, this mutant displayed a clear reduction in Ang II-stimulated phosphorylation. Such a correlation was further strengthened by the novel observation that the Ang II peptide antagonist, Sar1Ile8-Ang II, which paradoxically causes internalization of wild-type AT1A receptors, also promoted their phosphorylation. In an attempt to directly relate phosphorylation of the carboxyl terminus to endocytosis, the internalization kinetics of wild-type AT1A receptors and receptors mutated within the Thr332-Ser338 region were compared. The four putative phosphorylation sites (Thr332, Ser335, Thr336, and Ser338) were substituted with either neutral [alanine (A)] or acidic amino acids [glutamic acid (E) and aspartic acid (D)], the former to prevent phosphorylation and the latter to reproduce the acidic charge created by phosphorylation. Wild-type AT1A receptors, expressed in Chinese hamster ovary cells, rapidly internalized after Ang II stimulation [t1/2 2.3 min; maximal level of internalization (Ymax) 78.2%], as did mutant receptors carrying single acidic substitutions (T332E, t1/2 2.7 min, Ymax 76.3%; S335D, t1/2 2.4 min, Ymax 76.7%; T336E, t1/2 2.5 min, Ymax 78.2%; S338D, t1/2 2.6 min, Ymax 78.4%). While acidic amino acid substitutions may simply be not as structurally disruptive as alanine mutations, we interpret the tolerance of a negative charge in this region as suggestive that phosphorylation may permit maximal internalization. Substitution of all four residues to alanine produced a receptor with markedly reduced internalization kinetics (T332A/S335A/T336A/S338A, t1/2 10.1 min, Ymax 47.9%), while endocytosis was significantly rescued in the corresponding quadruple acidic mutant (T332E/S335D/T336E/S338D, t1/2 6.4 min, Ymax 53.4%). Double mutation of S335 and T336 to alanine also diminished the rate and extent of endocytosis (S335A/T336A, 3.9 min, Ymax 69.3%), while the analogous double acidic mutant displayed wild type-like endocytotic parameters (S335D/T336E, t1/2 2.6 min, Ymax 77.5%). Based on the apparent rescue of internalization by acidic amino acid substitutions in a region that we have identified as a site of Ang II-induced phosphorylation, we conclude that maximal endocytosis of the AT1A receptor requires phosphorylation within this serine/threonine-rich segment of the carboxyl terminus.


2007 ◽  
Vol 87 (2) ◽  
pp. 659-797 ◽  
Author(s):  
Geoffrey Burnstock

This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.


Sign in / Sign up

Export Citation Format

Share Document