The nervous system of a pilidium larva: evidence from electron microscope reconstructions

1985 ◽  
Vol 63 (8) ◽  
pp. 1909-1916 ◽  
Author(s):  
T. C. Lacalli ◽  
J. E. West

The principal ultrastructural features of a pilidium larva from Friday Harbor (pilidium A, unidentified as to species) are summarized and, based on electron microscope reconstructions, the larval nervous system is described for the first time. Ciliary effectors in the larva include the marginal ciliary band, which is drawn out to form a small accessory ridge at each of the junctions between lobes, and a pair of suboral (buccal) ridges, one on either side of the stomodeum, that run between the mouth and marginal band. The nervous system consists of a small intratrochal nerve supplying the marginal band, an oral nerve that encircles the mouth at the junction of stomodeum and stomach, and a pair of nerves connecting these that run beneath the suboral ridges. The nerve fibres appear to arise from uniciliate cells in the marginal band and the suboral region. The organization, innervation, and behavior of pilidium A are discussed briefly with reference to Müller's larva, a related larva with a similar type of trochal innervation.

2014 ◽  
Vol 20 (12) ◽  
pp. 1553-1559 ◽  
Author(s):  
Jennifer Joscelyn ◽  
Lloyd H Kasper

The fields of microbiology, immunology, neurology and nutrition are rapidly converging, as advanced sequencing and genomics-based methodologies have enabled the mapping out of the microbial diversity of humans for the first time. Bugs, guts, brains and behavior were once believed to be separate domains of clinical practice and research; however, recent observations in our understanding of the microbiome indicate that the boundaries between domains are becoming permeable. This permeability is multidirectional: Biological systems are operating simultaneously in a vastly complex and interconnected web. Understanding the microbiome-gut-brain axis will entail fleshing out the mechanisms by which transduction across each domain occurs, allowing us ultimately to appreciate the role of commensal organisms in shaping and modulating host immunity. This article will highlight animal and human research to date, as well as highlight directions for future research. We speculate that the gut microbiome is potentially the premier environmental risk factor mediating inflammatory central nervous system demyelination, in particular multiple sclerosis.


Author(s):  
Claire Moss ◽  
Robert D. Burke ◽  
Michael C. Thorndyke

Studies of the larval nervous system of two species of starfish were carried out using antisera to a recently isolated native echinoderm neuropeptide, GFNSALMFamide (S1), and to serotonin. S1-like immunoreactivity was found in the larvae of the asteroids Pisaster ochraceus and Asterias rubens (Echinodermata: Asteroidea), originating in the apical region and becoming concentrated as two groups of cells in the dorsal ciliary band, the preoral transverse and adoral ciliary bands in larvae up to the early brachiolarian stage (five weeks). The pattern of serotonin immunoreactivity, although appearing earlier in the apical nerve plexus, is very similar to that of the peptide, with paired groups of immuno- reactivity apparent in the dorsal ciliary band. This evidence, together with other recent studies, indicates that this neuropeptide is present in both the larval and adult nervous system, despite the complete reformation of the system at metamorphosis. The close localization of SI with serotonin may also suggest a possible function for the peptide in larval and adult nervous systems.


Author(s):  
Mamaeva S.N. ◽  
Vinokurov R.R. ◽  
Munkhalova Ya.A. ◽  
Dyakonova D.P. ◽  
Platonova V.A. ◽  
...  

Currently, due to the intensive development of high-tech science-intensive medical and research devices, more and more attention is paid to the development of diagnostics of rare and difficult to diagnose diseases. It is known that among numerous nephropathies, hematuria may be the only symptom of kidney and urinary tract diseases, which complicates their diagnosis and treatment. In order to develop new approaches for the diagnosis of nephropathies, the authors have been studying the morphology of red blood cells in the blood and urine of children and adults using a scanning electron microscope for several years. The paper presents the results of studies of children with various kidney diseases, including IgA-nephropathy, and chronic glomerulonephritis. Scanning electron microscopy was used for the first time to detect nanoparticles on the surface of red blood cells, the size of which is comparable to the size of viruses, which became the basis for one of the authors ' assumptions, namely, the possible transport of certain types of viruses by red blood cells. Thus, some kidney diseases could be considered virus-associated. This paper presents for the first time the results of determining the glomerular filtration rate of both kidneys separately in the study of separate kidney function and of the study of urine smears obtained during catheterization of the ureters in patients with hydronephrosis of one of the kidneys by scanning electron microscopy. As in previous studies, nanoparticles were found on the surface of red blood cells, which leads to the conclusion about the possible viral nature of the disease of the considered patient. In addition, smear images obtained using a microscope showed a significant difference in the elements of the right and left kidneys urine, which did not contradict the data on the study of glomerular filtration rate. According to the authors, the capabilities of the scanning electron microscope can be applied in fundamental research of kidney diseases at the cellular and molecular levels, forming new ideas about their origin, as well as on the basis of which new methods of non-invasive diagnostics can be built.


Author(s):  
Michel Meyer

Chapter 10 is devoted to the role of emotions or pathos. Pathos was the term ordinarily used to denote the notion of audience. For the first time since Aristotle, emotions receive a full role in a treatise on rhetoric. The responses of the audience are modulated by its emotions. What is their nature and how precisely do they operate? The areas of political and legal rhetoric are examined here in the light of an original view of the theory of distance: values at greater distance become passions at short distance, and this is one of the features which demarcates politics from law. Law and politics are not merely argumentative, nor are they entirely emotional. The norms they codify are often implicit in their shaping of our mutual expectations and behavior in the social world.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 265-278
Author(s):  
Jessica A Golby ◽  
Leigh Anna Tolar ◽  
Leo Pallanck

Abstract The N-ethylmaleimide-sensitive fusion protein (NSF) promotes the fusion of secretory vesicles with target membranes in both regulated and constitutive secretion. While it is thought that a single NSF may perform this function in many eukaryotes, previous work has shown that the Drosophila genome contains two distinct NSF genes, dNSF1 and dNSF2, raising the possibility that each plays a specific secretory role. To explore this possibility, we generated mutations in the dNSF2 gene and used these and novel dNSF1 loss-of-function mutations to analyze the temporal and spatial requirements and the degree of functional redundancy between dNSF1 and dNSF2. Results of this analysis indicate that dNSF1 function is required in the nervous system beginning at the adult stage of development and that dNSF2 function is required in mesoderm beginning at the first instar larval stage of development. Additional evidence suggests that dNSF1 and dNSF2 may play redundant roles during embryonic development and in the larval nervous system. Ectopic expression studies demonstrate that the dNSF1 and dNSF2 gene products can functionally substitute for one another. These results indicate that the Drosophila NSF proteins exhibit similar functional properties, but have evolved distinct tissue-specific roles.


1994 ◽  
Vol 40 (134) ◽  
pp. 132-134
Author(s):  
R.E. Gagnon ◽  
C. Tulk ◽  
H. Kiefte

AbstractSingle crystals and bicrystals of water ice have been adiabatically pressurized to produce, and clearly illustrate, two types of internal melt figures: (1) dendritic figures that grow from nucleation imperfections on the specimen’s surface, or from air bubbles at grain boundaries, into the ice as pressure is elevated; and (2) compression melt fractures, flat liquid-filled disks, that nucleate at imperfections in the crystal and grow with the application of pressure eventually to sprout dendritic fingers at the periphery. The transparency of the ice permitted visualization of the growth and behavior of the figures, and this could be an important tool in understanding the role of phase transformations in deep-focus earthquakes. Correlation between figure size and pressure is noted for the first time.


1985 ◽  
Vol 50 (1) ◽  
pp. 110-122
Author(s):  
Howard Becker

For any A ⊂ R, the Banach game B(A) is the following infinite game on reals: Players I and II alternately play positive real numbers a1; a2, a3, a4,… such that for n > 1, an < an−1. Player I wins iff ai exists and is in A.This type of game was introduced by Banach in 1935 in the Scottish Book [15], Problem 43. The (rather vague) problem which Banach posed was to characterize those sets A for which I (II) has a winning strategy in B(A). (There are three parts to Problem 43. In the first, Mazur defined a game G**(A) for every set A ⊂ R and conjectured that II has a winning strategy in G**(A) iff A is meager and I has a winning strategy in G**(A) iff A is comeager in some neighborhood; this conjecture was proved by Banach. Presumably Banach had this result in mind when he asked the question about B(A), and hoped for a similar type of characterization.) Incidentally, Problem 43 of the Scottish Book appears to be the first time infinite games of any sort were studied by mathematicians.This paper will not provide the reader with any answer to Banach's question. I know of no nontrivial way to characterize when player I (or II) wins, and I suspect there is none. This paper is concerned with a different (also rather vague) question: For which sets A is the Banach game B(A) determined? To say that B(A) is determined means, of course, that one of the players has a winning strategy for B(A).


2002 ◽  
Vol 13 (2) ◽  
pp. 698-710 ◽  
Author(s):  
Sylvie Ozon ◽  
Antoine Guichet ◽  
Olivier Gavet ◽  
Siegfried Roth ◽  
André Sobel

Stathmin is a ubiquitous regulatory phosphoprotein, the generic element of a family of neural phosphoproteins in vertebrates that possess the capacity to bind tubulin and interfere with microtubule dynamics. Although stathmin and the other proteins of the family have been associated with numerous cell regulations, their biological roles remain elusive, as in particular inactivation of the stathmin gene in the mouse resulted in no clear deleterious phenotype. We identified stathmin phosphoproteins inDrosophila, encoded by a unique gene sharing the intron/exon structure of the vertebrate stathmin andstathmin family genes. They interfere with microtubule assembly in vitro, and in vivo when expressed in HeLa cells. Drosophila stathmin expression is regulated during embryogenesis: it is high in the migrating germ cells and in the central and peripheral nervous systems, a pattern resembling that of mammalian stathmin. Furthermore, RNA interference inactivation ofDrosophila stathmin expression resulted in germ cell migration arrest at stage 14. It also induced important anomalies in nervous system development, such as loss of commissures and longitudinal connectives in the ventral cord, or abnormal chordotonal neuron organization. In conclusion, a single Drosophilagene encodes phosphoproteins homologous to the entire vertebrate stathmin family. We demonstrate for the first time their direct involvement in major biological processes such as development of the reproductive and nervous systems.


Sign in / Sign up

Export Citation Format

Share Document