Temperature-dependent development in Pseudocalanus species

1989 ◽  
Vol 67 (3) ◽  
pp. 559-564 ◽  
Author(s):  
I. A. McLaren ◽  
J.-M. Sévigny ◽  
C. J. Corkett

The duration of embryonic development and that of well-fed older stages were determined for Pseudocalanus acuspes, P. minutus, P. moultoni, and P. newmani. Excluding abnormal individuals, the times for older stages were lognormally distributed, with similar variances among species, stages, and temperatures. Some residual variance occurred among families reared together. Copepod rearings should take these sources of variance into account. Development times (D) were described well by Bělehrádek's temperature (T) function, D = a(T − α)−b, with b = 2.05 for all species from previous studies, and α and a fitted for embryonic development. Only a needed to be fitted for older stages (i.e., "equiproportional" development). Relative times to given stages at all temperatures (i.e., relative values of a) were similar in three species, but P. minutus deviated from this pattern. Values of α were directly related to presumed environmental temperatures in the species' ranges. Values of a were directly related to egg and body sizes of the different species. The temperature functions can be used to predict the lengths of the generations in these four species in nature when food is adequate.


1981 ◽  
Vol 38 (1) ◽  
pp. 77-83 ◽  
Author(s):  
I. A. McLaren ◽  
C. J. Corkett

Highly synchronous cohorts of the copepod Eurytemora herdmani at a station near Halifax, Nova Scotia, were followed in samples taken during late July and early August, 1980. Individuals from the same population were reared in the laboratory from copepodite I (CI) to adult in conditions of food satiation. Development times and adult body sizes in nature were about the same as predicted for comparable temperatures in the laboratory. Weight increments between CI and adult male in samples from nature were exponential. Females became heavier, because of eggs, after CIII, but developed more slowly, so that their specific growth rates were about the same as for males. Production estimated from weights and stage increments in successive samples (cohort method) was adequately predicted from biomasses in samples and temperature-dependent development times from the laboratory. Production of egg matter by adult females was also adequately predicted by temperature-dependent growth rates of younger stages. These "rules" of development, growth, and production need wider empirical testing and theoretical justification.Key words: Copepoda, temperature, life cycles, development, growth, production



2016 ◽  
Author(s):  
Brady K. Quinn

ABSTRACTTemperature-dependent development influences production rates of arthropods, including crustaceans important to fisheries and agricultural pests. Numerous candidate equation types (development functions) exist to describe the effect of temperature on development time, yet most studies use only a single type of equation and there is no consensus as to which, if any model predicts development rates better than the others, nor what the consequences of selecting a potentially incorrect model equation are on predicted development times. In this study, a literature search was performed of studies fitting development functions to development of arthropod larvae (99 species). The published data of most (79) of these species were then fit with 33 commonly-used development functions. Overall performance of each function type and consequences of using a function other than the best one to model data were assessed. Performance was also related to taxonomy and the range of temperatures examined. The majority (91.1 %) of studies were found to not use the best function out of those tested. Using the incorrect model lead to significantly less accurate (e.g., mean difference ± SE 85.9 ± 27.4 %, range: −1.7 to 1725.5 %) predictions of development times than the best function. Overall, more complex functions performed poorly relative to simpler ones. However, performance of some complex functions improved when wide temperature ranges were tested, which tended to be confined to studies of insects or arachnids compared with those of crustaceans. Results indicate the biological significance of choosing the best-fitting model to describe temperature-dependent development time data.HighlightsTemperature-dependent development functions of arthropod larvae were reviewed79 published datasets were re-tested and fit with 33 different function types91.1 % of published studies did not fit their data with the best function of those testedPerformance differed among functions and was related to taxon and temperature range testedFunction type impacted predicted development times, so using the best function matters





1973 ◽  
Vol 63 (1) ◽  
pp. 155-168 ◽  
Author(s):  
Denis Branagan

AbstractA study, begun in 1966 at Edinburgh University, and completed during the ensuing 30 months at Muguga, Kenya, of the developmental periods of Rhipicephalus appendiculatus Neum. under controlled temperature and humidity was carried out to provide basic background information for an intensified FAO/EAVRO programme of East Coast fever research. Quantitative data are given on the preoviposition, pre-eclosion and, for larvae and nymphs, premoulting periods at three constant temperatures, 25, 21 and 18°C. The rate of development at all stages was accelerated by raising the temperature and retarded by lowering it. A “pre-immobilization period” which precedes the entry of engorged larvae and nymphs to the true moulting process also appeared to be temperature dependent. Development became very prolonged as temperatures fell below 18°C, being negligible at 15°C and having apparently ceased altogether at 9°C. Continuous exposure for more than two or three days to temperatures of 4°C and below were lethal to all engorged instars. Humidity (controlled at levels between 18 and 87% r.h.) had no influence on the rate of development. It is concluded that within limits of tolerable aridity, developmental periods would be completed within the times dictated by temperature regardless of the level of humidity or changes in the level of humidity. No suggestion of any diapause mechanism was discerned.



1994 ◽  
Vol 126 (5) ◽  
pp. 1263-1275 ◽  
Author(s):  
Gary J.R. Judd ◽  
Joan E. Cossentine ◽  
Mark G.T. Gardiner ◽  
Donald R. Thomson

AbstractTemperature-dependent development of eggs, larvae, and pupae of the speckled green fruitworm, Orthosia hibisci Guenée, at constant temperatures of 5–30.0 °C, 7.5–27.5 °C, and 0.8–20.8 °C, respectively, was described. Development times decreased with increasing temperatures and minimum developmental times in eggs, larvae, and pupae occurred at ca. 27.5, 25, and 20.8 °C, respectively. Variation in development times of all life stages was modelled accurately (R2 values 0.98–0.99) with a Weibull distribution. Relationships between temperature and developmental rates of all life stages were described by linear degree-day (DD) and nonlinear poikilotherm models. There were significant differences (ANOVA, P < 0.05) among the slopes of regression equations describing developmental rates of different life stages and larval instars. Minimum developmental temperatures for eggs (3.4 °C), first- through fifth-instar larvae (4.7, 2.9, 3.6, 3.5, and 3.7 °C), and pupae (2.8 °C) were determined by extrapolation of linear regression equations to the x-intercept. Median development time of eggs, first- through fifth-instar larvae, and pupae required 99.0, 44.2, 51.5, 52.4, 57.1, 69.9, and 61.3 DD above the minimum developmental temperatures, respectively. Developmental rates of eggs and all larval instars averaged were described by six-parameter models exhibiting low- and high-temperature inhibition. Development of pupae was best described by a four-parameter model exhibiting low- but no high-temperature inhibition. This information should be useful for developing a phenology model to improve management actions against O. hibisci.



Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 230
Author(s):  
Yu Wang ◽  
Yinghui Wang ◽  
Man Wang ◽  
Wang Xu ◽  
Yanan Zhang ◽  
...  

While the earliest record of forensic entomology originated in China, related research did not start in China until the 1990s. In this paper, we review the recent research progress on the species identification, temperature-dependent development, faunal succession, and entomological toxicology of sarcosaprophagous insects as well as common applications of forensic entomology in China. Furthermore, the difficulties and challenges forensic entomologists face in China are analyzed and possible countermeasures are presented.



Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.



Sign in / Sign up

Export Citation Format

Share Document