scholarly journals Slip in adhesion tests of a Kaolin clay

2021 ◽  
Vol 44 (8) ◽  
Author(s):  
M. J. Hayes ◽  
M. I. Smith

Abstract Adhesion tests were performed on concentrated suspensions of Kaolin clay. At low concentrations samples formed conical deposits on both the top and bottom plates with the central region narrowing to a filament before undergoing breakup. In contrast high concentration samples deformed as a cylinder before apparently fracturing into two pieces. As the concentration of the samples was increased the samples underwent quite different forms of slip which it is shown can be deduced from their respective force distance curves. The type of slip behaviour for a given concentration of clay could be modified with changes to surface roughness, the initial compressive load prior to an experiment and with the separation velocity of the plates. The different slip characteristics appear to arise from the concentration dependent way in which particles interact with the rough surface topography. Graphic Abstract

Author(s):  
T. R. Davydova ◽  
А. I. Shaikhaliev ◽  
D. A. Usatov ◽  
G. A. Gasanov ◽  
R. S. Korgoloev

The aim of this study was to study the effect of surface branching of titanium endoprostheses on the efficiency of fibrointegration. The object of the study was samples of titanium alloy Ti6Al4V in the form of disks with a diameter of 5 mm and a thickness of 1 mm with various surface treatments: 1) samples with a rough surface after sandblasting; 2) samples with a rough surface after sandblasting with a bioactive coating of titanium dioxide TiO2 with anatase structure. The study of surface roughness was carried out by profilometry. Evaluation of the spreading and proliferation of cells on the surface of test samples, as well as evaluation of the effectiveness of fibrointegration was carried out according to standard methods using scanning electron microscopy. During the experiments, mesinchymal stem cells were sown on test samples and the test samples were introduced into the soft tissues of experimental animals. Based on the results obtained, it was concluded that the technology of forming rough surfaces by sandblasting does not provide high uniformity and reproducibility in the nanometer range and, apparently, another method for obtaining a rough surface should be chosen. The application of a bioactive coating of titanium dioxide TiO2 with the anatase structure to the surface of titanium endoprostheses increases the efficiency of fibrointegration, however, primarily the fibrointegration of titanium endoprostheses depends on their surface roughness, which determines the concentration of cell structures, the intensity of their adhesion and the ability to fibrointegrative process.


Nanoscale ◽  
2020 ◽  
Author(s):  
Feifei ZHANG ◽  
Jérôme Plain ◽  
Davy Gerard ◽  
Jérôme Martin

The surface topography is known to play an important role on the near- and far- field optical properties of metallic nanoparticles. In particular, aluminum (Al) nanoparticles are commonly fabricated through...


Author(s):  
Yasuyoshi Fukuda ◽  
Misako Higashiya ◽  
Takahiro Obata ◽  
Keita Basaki ◽  
Megumi Yano ◽  
...  

Abstract To cryopreserve cells, it is essential to avoid intracellular ice formation during cooling and warming. One way to achieve this is to convert the water inside the cells into a non-crystalline glass. It is currently believed that to accomplish this vitrification, the cells must be suspended in a very high concentration (20–40%) of a glass-inducing solute, and subsequently cooled very rapidly. Herein, we report that this belief is erroneous with respect to the vitrification of one-cell rat embryos. In the present study, one-cell rat embryos were vitrified with 5 μL of EFS10 (a mixture of 10% ethylene glycol, 27% Ficoll, and 0.45 M sucrose) in cryotubes at a moderate cooling rate, and warmed at various rates. Survival was assessed according to the ability of the cells to develop into blastocysts and to develop to term. When embryos were vitrified at a 2,613 °C/min cooling rate and thawed by adding 1 mL of sucrose solution (0.3 M, 50 °C) at a warming rate of 18,467 °C/min, 58.1 ± 3.5% of the EFS10-vitrified embryos developed into blastocysts, and 50.0 ± 4.7% developed to term. These rates were similar to those of non-treated intact embryos. Using a conventional cryotube, we achieved developmental capabilities in one-cell rat embryos by rapid warming that were comparable to those of intact embryos, even using low concentrations (10%) of cell-permeating cryoprotectant and at low cooling rates.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 479
Author(s):  
Yang Zhao ◽  
Fan Sun ◽  
Peng Jiang ◽  
Yongle Sun

The effects of surface roughness on the stresses in an alumina scale formed on a Fecralloy substrate are investigated. Spherical indenters were used to create indents with different radii and depths to represent surface roughness and then the roughness effect was studied comprehensively. It was found that the residual stresses in the alumina scale formed around the rough surface are almost constant and they are dominated by the curvature rather than the depth of the roughness. Oxidation changes the surface roughness. The edge of the indent was sharpened after oxidation and the residual stress there was released presumably due to cracking. The residual stresses in the alumina scale decrease with increase in oxidation time, while the substrate thickness has little effect, given that the substrate is thicker than the alumina scale. Furthermore, the effect of roughness on the oxide growth stress is analysed. This work indicates that the surface roughness should be considered for evaluation of stresses in coatings.


2014 ◽  
Vol 592-594 ◽  
pp. 1371-1375
Author(s):  
Nitesh Talekar ◽  
Punit Kumar

Consideration of surface roughness in steady state EHL line contact is the first step towards understanding the lubrication of rough surface problem. Current paper investigates the use of sinusoidal waviness in the contact; more precisely it gives performance of real fluid in EHL line contact. The effect of various parameters like rolling velocity (U) and maximum Hertzian pressure (ph) on surface roughness by using properties of linear and exponential piezo-viscosity is taken into consideration to evaluate behavior of pressure distribution of load carrying fluid film and film thickness. Full isothermal, Newtonian simulation of EHL problem gives described effects. Spiking or fluctuation of pressure and film thickness curves is expected to show presence of irregularities on the surface chosen and amount of fluctuation depends on certain parameters and intensity of irregularities present. Rolling side domain of-4.5 ≤ X ≤ 1.5 with grid size ∆X=0.01375 is selected. A computer code is developed to solve Reynolds equation, which governs the generation of pressure in the lubricated contact zone is discritized and solved along with load balance equation using Newton-Raphson technique.


1975 ◽  
Vol 18 (1) ◽  
pp. 113-121
Author(s):  
R.M. Rizki ◽  
T.M. Rizki ◽  
C.A. Andrews

The effects of wheat germ agglutinin on Drosophila embryonic cell lines growing on cover-glasses was examined by scanning electron microscopy. At low concentrations of the lectin (5-10 mug/ml), cells spread against the glass surface and fused to form syncytia. At high concentration, damage to the cell surface was evidenced as extensive membrane shrivelling and loss of surface microfilaments. Fusion also occurred under these conditions. There was some indication that the morphology of cells in division remains undisturbed by wheat germ agglutinin. The coalescence of cells and morphologic disotrtion induced by wheat germ agglutinin were not inhibited by N-acetylglucosamine, the hapten inhibitor of the lectin, under the conditions utilized in this study.


Author(s):  
Yutong Qiu ◽  
Jingfei Yin ◽  
Yang Cao ◽  
Wenfeng Ding

Tangential ultrasonic vibration-assisted grinding (TUAG) has a wide prospect in machining difficult-to-machine materials. However, the surface generation mechanism in TUAG is not fully recovered. This study proposes an analytical model of the surface topography produced by TUAG. Based on the model, the surface topography and roughness are predicted and experimentally verified. In addition, the influence of the grinding parameters on the surface topography is analyzed. The predicted surface topography well coincides with experimental measurements, and the prediction error in surface roughness Ra by the proposed model is less than 5%. Compared with conventional grinding, TUAG produces a surface with more uniform scratches and surface roughness Ra was reduced by up to 27% with the proper parameters. However, the improvement of surface roughness in TUAG is weakened when grinding speed or depth of cut increases. Moreover, the influence of the ultrasonic vibration amplitude on the surface roughness is not monotonous. With the grinding parameters selected in this study, TUAG with an ultrasonic amplitude of 7.5 μm produces the minimum surface roughness.


1994 ◽  
Vol 116 (4) ◽  
pp. 850-859 ◽  
Author(s):  
C. Y. Poon ◽  
R. S. Sayles

The effects of surface roughness and waviness upon the real contact areas, gaps between contact spots, and asperity contact pressures were studied. The distribution of real areas, gaps, and contact pressures are presented for different surface roughness, σ and correlation lengths, β*. The load-area relationship is compared to Bush’s model of strongly anisotropic rough surface contact using a stochastic approach.


Sign in / Sign up

Export Citation Format

Share Document