Effect of Dang-Gui-Ji-Hwang-Yeum on Osteoporosis in Ovariectomized Rats

2004 ◽  
Vol 32 (03) ◽  
pp. 351-360 ◽  
Author(s):  
Han-Jung Chae ◽  
Dong-Hyeon Yun ◽  
Hee-Young Chin ◽  
Sim-Keum Yoo ◽  
Hyung-Min Kim ◽  
...  

Dang-Gui-Ji-Hwang Yeum (DGJHY; an Oriental prescription), has been successfully used for the management of osteoporotic disorders in China, Japan and Korea. In this study, we have characterized the effect of DGJHY on osteoporosis-associated phenomena in ovariectomized (OVX) rats by measuring body weights and bone histomorphometries in sham, OVX and DGJHY-administered OVX rats. Light microscopic analyses showed a porous or an eroded appearance on the tibial trabecular bone surface in OVX rats, whereas those of the sham and DGJHY-administered OVX rats were composed of fine particles. The trabecular bone area and the trabecular thickness in OVX rats were significantly lower than those of sham rats. Moreover, these reductions in OVX rats were significantly reversed by the administration of DGJHY for 7 weeks, and osteoclast numbers were also significantly reduced. Although no differences were observed between OVX and DGJHY-administered OVX rats and the sham animals at the T 3 level, we have found significant differences between these two groups at the T 4 level. However, serum phosphorus, calcium, mechanical strength and the surface appearance of osteoblasts in the DGJHY-administered OVX rats were similar to those of OVX rats. These results suggest that DGJHY is effective at preventing bone loss in OVX rats.

2002 ◽  
Vol 88 (4) ◽  
pp. 365-377 ◽  
Author(s):  
Katharina E. Scholz-Ahrens ◽  
Yahya Açil ◽  
Jürgen Schrezenmeir

We investigated the effects of dietary oligofructose and Ca on bone structure in ovariectomized rats, using microradiography and histomorphometry. Ninety-six animals were allocated to seven experimental groups: G1, sham-operated; G2–G7, ovariectomized. Semi-purified diets containing 5 g Ca/kg (recommended content) without oligofructose (G1, G2) or with 25, 50 or 100 g oligofructose/kg (G3, G4, G5) or 10 g Ca/kg (high content) without oligofructose (G6) or with 50 g oligofructose/kg (G7) were fed for 16 weeks. At the recommended level of Ca, high oligofructose (G5) increased femur mineral levels in ovariectomized rats, while medium oligofructose did so at high Ca. Increasing Ca in the absence of oligofructose did not increase femur mineral content. Trabecular bone area (%) analysed in the tibia was 10·3 (SEM 1·2) (G1), 7·7 (SEM 0·6) (G2), 9·3 (SEM 0·7) (G3), 9·4 (SEM 1·0) (G4), 9·5 (SEM 0·7) (G5), 10·2 (SEM 0·8) (G6), and 12·6 (SEM 0·8) (G7). At the recommended level of Ca, 25 g oligofructose/kg prevented loss of trabecular area due to increased trabecular thickness, while 50 or 100 g oligofructose/kg increased trabecular perimeter. At high Ca, oligofructose prevented loss of bone area due to increased trabecular number but similar thickness (G7v. G6). When Ca was raised in the presence of oligofructose (G7), trabecular area and cortical thickness were highest, while loss of trabecular connectivity was lowest of all groups. At the same time, lumbar vertebra Ca was higher; 44·0 (SEM 0·8) (G7) compared with 41·6 (SEM 0·8) (G2), 41·4 (SEM 0·7) (G4), and 40·5 (SEM 1·0) mg (G6). We conclude that ovariectomy-induced loss of bone structure in the tibia was prevented but with different trabecular architecture, depending on whether dietary Ca was increased, oligofructose was incorporated, or both. Oligofructose was most effective when dietary Ca was high.


2011 ◽  
Vol 212 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Rana Samadfam ◽  
Malaika Awori ◽  
Agnes Bénardeau ◽  
Frieder Bauss ◽  
Elena Sebokova ◽  
...  

Peroxisome proliferator-activated receptor (PPAR) γ agonists, such as pioglitazone (Pio), improve glycemia and lipid profile but are associated with bone loss and fracture risk. Data regarding bone effects of PPARα agonists (including fenofibrate (Feno)) are limited, although animal studies suggest that Feno may increase bone mass. This study investigated the effects of a 13-week oral combination treatment with Pio (10 mg/kg per day)+Feno (25 mg/kg per day) on body composition and bone mass parameters compared with Pio or Feno alone in adult ovariectomized (OVX) rats, with a 4-week bone depletion period, followed by a 6-week treatment-free period. Treatment of OVX rats with Pio+Feno resulted in ∼50% lower fat mass gain compared with Pio treatment alone. Combination treatment with Pio+Feno partially prevented Pio-induced loss of bone mineral content (∼45%) and bone mineral density (BMD; ∼60%) at the lumbar spine. Similar effects of treatments were observed at the femur, most notably at sites rich in trabecular bone. At the proximal tibial metaphysis, concomitant treatment with Pio+Feno prevented Pio exacerbation of ovariectomy-induced loss of trabecular bone, resulting in BMD values in the Pio+Feno group comparable to OVX controls. Discontinuation of Pio or Feno treatment of OVX rats was associated with partial reversal of effects on bone loss or bone mass gain, respectively, while values in the Pio+Feno group remained comparable to OVX controls. These data suggest that concurrent/dual agonism of PPARγ and PPARα may reduce the negative effects of PPARγ agonism on bone mass.


2019 ◽  
Vol 13 (01) ◽  
pp. 058-063
Author(s):  
Nike Hendrijantini ◽  
Poedjo Hartono ◽  
Muhammad Dimas Aditya Ari ◽  
Fedik Abdul Rantan

Abstract Objective The aim of this study is to evaluate the feasibility of human umbilical cord mesenchymal stem-cell (hUCMSC) therapy in increasing osteoporotic mandibular bone density in a rat model by determining changes in alkaline phosphatase (ALP), osteocalcin, type 1 collagen, and trabecular bone area after treatment. Materials and Methods This research adopted an experimental posttest-only control group design. Thirty female Wistar rats were randomly divided into six groups, namely, a control group with rats postsham surgery (T1), osteoporotic model postovariectomy rats (T2), postovariectomy rats 4 weeks after gelatin injection (T3), postovariectomy rats 8 weeks after gelatin injection (T4), postovariectomy rats 4 weeks after hUCMSC injection (T5), and postovariectomy rats 8 weeks after hUCMSC injection (T6). The rats were all sacrificed for histological and immunohistochemical examinations of ALP, osteocalcin, type 1 collagen, and trabecular bone area. Results Increased expression of ALP, type 1 collagen, and osteocalcin, as well as increased trabecular bone area, was observed in the treatment groups compared with that in the osteoporotic groups. Conclusion hUCMSCs produce significant osteogenic effects and increase osteoporotic mandibular bone density in the animal model. Increases in bone density are demonstrated by the higher levels of ALP, osteocalcin, and type 1 collagen, as well as increases in the trabecular bone area.


1998 ◽  
Vol 12 (1) ◽  
pp. 76-81 ◽  
Author(s):  
T. Sasaki ◽  
N.S. Ramamurthy ◽  
L.M. Golub

The effect of a new non-antimicrobial analog of tetracycline (CMT-8) on bone loss in ovariectomized (OVX) rats was examined. Three-month-old female rats were ovariectomized, and one week later, were distributed into 3 groups: sham-operated non-OVX controls, vehicle-treated OVX controls, and CMT-8-treated OVX rats. After 145 days of daily CMT-8 administration, the intact femurs were dissected and examined by several histological and histomorphometric techniques. OVX significantly (p < 0.01) decreased trabecular bone volume by 53.4% in the metaphyses compared with sham-operated controls. CMT-8 therapy produced a significant (p < 0.05) inhibition of trabecular bone loss and also induced bone formation in the OVX rats. Of interest, the newly synthesized bone in the CMT-treated OVX rats was found to increase the "connectivity" of the trabecular "struts" by bridging the adjacent longitudinal bone trabeculae, forming dense, platelike bone trabeculae. These results strongly suggest that long-term CMT-8 therapy effectively inhibits bone loss after OVX, not only by inhibiting bone resorption but also by inducing new bone formation in the trabecular areas of long bones.


2014 ◽  
Vol 29 (1) ◽  
pp. 221-231 ◽  
Author(s):  
Marta Ferreira Bastos ◽  
Diogo José Barreto Menezes ◽  
Joyce Pinho Bezerra ◽  
Caetlin Kelmy Craneck Braz ◽  
Paula Fernanda Silva Fonseca ◽  
...  

2003 ◽  
Vol 95 (3) ◽  
pp. 1032-1037 ◽  
Author(s):  
Akiko Honda ◽  
Naota Sogo ◽  
Seigo Nagasawa ◽  
Takuya Shimizu ◽  
Yoshihisa Umemura

The effect of jump exercise on middle-aged osteopenic rats was investigated. Forty-two 9-mo-old female rats were either sham-operated (Sham) or ovariectomized (OVX). Three months after surgery, the rats were divided into the following groups: Sham sedentary, Sham exercised, OVX sedentary, and OVX exercised. Rats in the exercise groups jumped 10 times/day, 5 days/wk, for 8 wk, with a jumping height of 40 cm. Less than 1 min was required for the jump training. After the experiment, the right tibia and femur were dissected, and blood was obtained from each rat. OVX rats were observed to have increased body weights and decreased bone mass in their tibiae and femurs. Jump-exercised rats, on the other hand, had significantly increased tibial bone mass, strength, and cortical areas. The bone mass and strength of OVX exercised rats increased to approximately the same extent as Sham exercised rats, despite estrogen deficiency or osteopenia. Our data suggest that jump exercise has beneficial effects on lower limb bone mass, strength, bone mineral density, and morphometry in middle-aged osteopenic rats, as well as in Sham rats.


2019 ◽  
Vol 52 (1) ◽  
pp. 13
Author(s):  
Amiyatun Naini ◽  
I Ketut Sudiana ◽  
Mohammad Rubianto ◽  
Utari Kresnoadi ◽  
Faurier Dzar Eljabbar Latief

Background: Damage to bone tissue resulting from tooth extraction will cause alveolar bone resorption. Therefore, a material for preserving alveolar sockets capable of maintaining bone is required. Hydroxyapatite Gypsum Puger (HAGP) is a bio-ceramic material that can be used as an alternative material for alveolar socket preservation. The porous and rough surface of HAGP renders it a good medium for osteoblast cells to penetrate and attach themselves to. In general, bone mass is regulated through a remodeling process consisting of two phases, namely; bone formation by osteoblasts and bone resorption by osteoclasts. Purpose: This research aims to identify the effects of HAGP scaffold application on the number of osteoblasts and osteoclasts, as well as on the width of trabecular bone area in the alveolar sockets of rats. Methods: This research used Posttest Only Control Group Design. There were three research groups, namely: a group with 2.5% HAGP scaffold, a group with 5% HAGP scaffold and a group with 10% HAGP scaffold. The number of samples in each group was six. HAGP scaffold at concentrations of 2.5%, 5% and 10% was then mixed with PEG (Polyethylene Glycol). The Wistar rats were anesthetized intra-muscularly with 100 mg/ml of ketamine and 20 mg/ml of xylazine base at a ratio of 1:1 with a dose of 0.08-0.2 ml/kgBB. Extraction of the left mandibular incisor was performed before 0.1 ml preservation of HAGP scaffold + PEG material was introduced into the extraction sockets and suturing was performed. 7 days after preparation of the rat bone tissue, an Hematoxilin Eosin staining process was conducted in order that observation under a microscope could be performed. Results: There were significant differences in both the number of osteoclasts and osteoblasts between the 2.5% HAGP group, the 5% HAGP group and the 10% HAGP group (p = 0.000). Similarly, significant differences in the width of the trabecular bone area existed between the 5% HAGP group and the 10% HAGP group, as well as between the 2.5% HAGP group and the 10% HAGP group (p=0.000). In contrast, there was no significant difference in the width of the trabecular bone area between the 2.5% HAGP group and the 5% HAGP group. Conclusion: The application of HAGP scaffold can reduce osteoclasts, increase osteoblasts and extend the trabecular area in the alveolar bone sockets of rats.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 505-505
Author(s):  
Neil Rabin ◽  
Chara Kyriakou ◽  
Reuben Benjamin ◽  
Arnold Pizzey ◽  
Orla Gallagher ◽  
...  

Abstract Bone disease in multiple myeloma (MM) results from increased osteoclast (OCL) numbers and activity, which is associated with an increase in RANK Ligand and reduction in osteoprotegerin (OPG). Systemic administration of recombinant OPG reduces MM bone disease, but the short half life of OPG limits its usefulness. Gene modified mesenchymal stem cells (MSCs) offer a potential means of delivering stable expression of OPG in vivo to reduce OCL activation and bone destruction. Bone marrow derived human MSCs were transduced with a self-inactivating bicistronic lentiviral vector containing human OPG and GFP (MSCOPG). Control vector was identical except the OPG was cloned in reverse orientation (MSCGPO). Efficient transduction was demonstrated by high GFP expression (96% MSCOPG, 92% (MSCGPO). Stable transgene expression of human OPG (hOPG) occurred for beyond 20 passages in vitro, and hOPG was detected in vivo after tail vein administration of MSCOPG (2ng/mL hOPG detected in mouse serum 1 week after tail vein administration of 3 x 106 MSCOPG). Immunophenotype and differentiation potential of MSCs were maintained following transduction. A xenogeneic model of MM was developed. 1 x 107 KMS-12-BM cells injected tail vein into b2 m NOD/SCID mice leads to tumour infiltration in the bone marrow at 6 weeks, with varied tumour take between the bones examined. Using histomorphometric analysis trabecular bone area (TBA) was assessed as the proportion of trabecular bone in 0.5625 mm2 of marrow space 0.2 mm from growth plate. OCL were recorded as the proportion lining the endocortical surface (%OcPm). Reduction of trabecular bone in the tibia is related to the amount of tumour (KMS-12-BM tibia with >70% tumour mean TBA 0.7+/− 0.2 vs. KMS-12-BM tibia with <70% tumour mean 5.1+/− 0.8, p<0.01, which is similar to non diseased animals). All subsequent analysis were carried out on tibia with >70% tumour. There was no change in trabecular bone in the lumbar vertebrae. OCL were increased in the tibia and lumbar vertebrae of tumour bearing mice (PBS group mean %OcPm 0.9+/− 0.3 and 1.1+/− 0.4 vs. KMS-12-BM group mean 7.2+/− 3.2 and 7.5 +/− 2.2 in tibia and lumbar vertebrae respectively, p=0.01 in both groups). We hypothesised that MSCs expressing OPG will prevent the increase in OCL and subsequent loss of trabecular bone. Infusion of unmanipulated MSC or MSCGPO had no effect on %OcPm or TBA in diseased animals. 1 x106 MSCOPG or MSCGPO were injected by tail vein 2, 3 and 4 weeks after KMS-12-BM injection. Another group received KMS-12-BM alone. All mice were culled at 6 weeks. Trabecular bone was increased in the tibia of tumour bearing mice treated with MSCOPG (mean TBA 1.4 +/− 0.5) compared to control animals receiving MSCGPO or tumour alone (mean TBA 0.6 +/− 0.2), p=0.03, with a trend showing a reduction of OCL in the tibia of the MSCOPG group (mean %OcPm 2.6+/− 1.0) vs. control group (mean %OcPm 4.2+/− 1.5, NS). Importantly in the lumbar vertebrae, OCL were reduced in the MSCOPG group (mean %OcPm 1.9 +/− 0.4) compared to control animals (mean %OcPm 3.5+/− 0.5), p<0.01. Conclusion: MSCs gene modified with OPG are able to increase TBA in the tibia and reverse OCL activation in a xenogeneic model of MM. Gene modified MSCs may have future potential in treating MM induced bone disease.


2018 ◽  
Vol 67 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Tomoka Hasegawa ◽  
Tomomaya Yamamoto ◽  
Sadaoki Sakai ◽  
Yukina Miyamoto ◽  
Hiromi Hongo ◽  
...  

Summary Intermittent administration of human parathyroid hormone (1-34) (hPTH(1-34)) promotes anabolic action in bone by stimulating bone remodeling, while eldecalcitol, an analog of active vitamin D3, suppresses osteoclastic bone resorption, and forms new bone by minimodeling. We have examined the biological effects of combined administration of eldecalcitol and hPTH(1-34) on 9-week-old Wistar rats that underwent an ovariectomy (OVX) or Sham operation. They were divided into a Sham group, OVX with vehicle (OVX group), OVX with 10 µg/kg/day of hPTH(1-34) (PTH group), OVX with 20 ng/kg/day of eldecalcitol (eldecalcitol group) or OVX with 10 μg/kg/day of hPTH(1-34), and 20 ng/kg/day of eldecalcitol (combined group) for 4 or 8 weeks. As a consequence, the combined group showed a marked increase in bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) than OVX and had the highest bone mineral density (BMD) compared with other groups. OVX and PTH groups exhibited a high osteoblastic surface/bone surface (Ob.S/BS), mineral apposition rate (MAR), and bone formation rate/bone surface (BFR/BS) indices and many TRAP-reactive osteoclasts. Contrastingly, eldecalcitol and combined groups tended to attenuate the indices of osteoclastic surface/bone surface (Oc.S/BS) and Ob.S/BS than that the other groups. The combined group revealed histological profiles of minimodeling- and remodeling-based bone formation. Thus, the combined administration of eldecalcitol and hPTH(1-34) augments their anabolic effects by means of minimodeling and remodeling.


Sign in / Sign up

Export Citation Format

Share Document