Magnoliae Flos Essential Oil as an Immunosuppressant in Dendritic Cell Activation and Contact Hypersensitivity Responses

2020 ◽  
Vol 48 (03) ◽  
pp. 597-613 ◽  
Author(s):  
Chun-Hsien Chen ◽  
Hsin-Chun Chen ◽  
Wen-Te Chang ◽  
Meng-Shiou Lee ◽  
Yi-Chen Liu ◽  
...  

Magnoliae Flos is a commonly used traditional medicinal material in Asia. It is used to treat sinusitis, nasal congestion, and hypersensitive skin. Because Magonlia Flos was described as an aromatic material in ancient Chinese texts, we hypothesized that its essential oil may be used to treat immune disorders. Dendritic cells (DCs), regarded as a major target of immunomodulators to control immune responses, play a critical role in the adaptive immune response. In this study, Magnoliae Flos essential oil (MFEO) decreased the production of the cytokines TNF-[Formula: see text], IL-6, and IL-12p70 in lipopolysaccharide (LPS)-stimulated DCs. It also suppressed the surface markers MHC II, CD80, and CD86 in LPS-stimulated DCs. Animal models demonstrated that the 2,4-Dinitro-1-fluorobenzene (DNFB) inducing a contact hypersensitivity response was inhibited following treatment with MFEO. In addition, MFEO inhibited the infiltration of T cells in the ears of DNFB-induced mice. To explore its bioactive compounds, the components of MFEO were analyzed using gas chromatography (GC) and GC-mass spectrometry. The results revealed that the major compounds in MFEO are camphor and 1,8-cineole. Additional DC bioassays confirmed that these compounds substantially suppressed cytokine production in LPS-induced DCs. Therefore, we demonstrated that MFEO exhibits an immunosuppressive effect both in vivo and in vitro, and camphor and 1,8-cineole may be the major components responsible for its immunosuppressive ability. The findings indicate that MFEO has the potential to be developed as a new immunosuppressant for excessive diseases.

Blood ◽  
2003 ◽  
Vol 102 (12) ◽  
pp. 4090-4098 ◽  
Author(s):  
Katja Brandt ◽  
Silvia Bulfone-Paus ◽  
Donald C. Foster ◽  
René Rückert

Abstract Interleukin 21 (IL-21) is a newly described cytokine with homology to IL-4 and IL-15. They belong to a cytokine family that uses the common γ chain for signaling but also have their private high-affinity receptors. Since it is well known that IL-4 modulates differentiation and activation of dendritic cells (DCs), we analyzed effects of IL-21 compared with IL-15 on DC differentiation, maturation, and function. Here we show that DCs generated with granulocyte-macrophage colony-stimulating factor (GMCSF) in the presence of IL-21 (IL-21DCs) differentiated into phenotypically and functionally altered DCs characterized by reduced major histocompatibility complex class II (MHCII) expression, high antigen uptake, and low stimulatory capacity for T-cell activation in vitro. Additionally, IL-21DCs completely failed to induce antigen (Ag)-specific T-cell mediated contact hypersensitivity. Furthermore, IL-21 blocked lipopolysaccharide (LPS)-induced activation and maturation of DCs, which was not mediated by release of the anti-inflammatory cytokine IL-10. In contrast, when supplementing GMCSF with IL-15, DCs differentiated into mature antigen-presenting cells (APCs) with low antigen uptake and highly significant increased capacities to stimulate T cells in vitro and in vivo. Taken together, these results identify a dichotomous action of these structurally related cytokines on DCs, establishing IL-21 as inhibitory cytokine on DC activation and IL-15 as potent stimulator of DC function, making both cytokines interesting targets for therapeutic manipulation of DC-induced immune reactions. (Blood. 2003;102: 4090-4098)


2015 ◽  
Vol 112 (13) ◽  
pp. 4080-4085 ◽  
Author(s):  
Lauren P. Schewitz-Bowers ◽  
Philippa J. P. Lait ◽  
David A. Copland ◽  
Ping Chen ◽  
Wenting Wu ◽  
...  

Glucocorticoids remain the cornerstone of treatment for inflammatory conditions, but their utility is limited by a plethora of side effects. One of the key goals of immunotherapy across medical disciplines is to minimize patients’ glucocorticoid use. Increasing evidence suggests that variations in the adaptive immune response play a critical role in defining the dose of glucocorticoids required to control an individual’s disease, and Th17 cells are strong candidate drivers for nonresponsiveness [also called steroid resistance (SR)]. Here we use gene-expression profiling to further characterize the SR phenotype in T cells and show that Th17 cells generated from both SR and steroid-sensitive individuals exhibit restricted genome-wide responses to glucocorticoids in vitro, and that this is independent of glucocorticoid receptor translocation or isoform expression. In addition, we demonstrate, both in transgenic murine T cells in vitro and in an in vivo murine model of autoimmunity, that Th17 cells are reciprocally sensitive to suppression with the calcineurin inhibitor, cyclosporine A. This result was replicated in human Th17 cells in vitro, which were found to have a conversely large genome-wide shift in response to cyclosporine A. These observations suggest that the clinical efficacy of cyclosporine A in the treatment of SR diseases may be because of its selective attenuation of Th17 cells, and also that novel therapeutics, which target either Th17 cells themselves or the effector memory T-helper cell population from which they are derived, would be strong candidates for drug development in the context of SR inflammation.


2004 ◽  
Vol 199 (12) ◽  
pp. 1631-1640 ◽  
Author(s):  
Melissa W. Boulé ◽  
Courtney Broughton ◽  
Fabienne Mackay ◽  
Shizuo Akira ◽  
Ann Marshak-Rothstein ◽  
...  

Dendritic cell (DC) activation by nucleic acid–containing immunoglobulin (Ig)G complexes has been implicated in systemic lupus erythematosus (SLE) pathogenesis. However, the mechanisms responsible for activation and subsequent disease induction are not completely understood. Here we show that murine DCs are much more effectively activated by immune complexes that contain IgG bound to chromatin than by immune complexes that contain foreign protein. Activation by these chromatin immune complexes occurs by two distinct pathways. One pathway involves dual engagement of the Fc receptor FcγRIII and Toll-like receptor (TLR)9, whereas the other is TLR9 independent. Furthermore, there is a characteristic cytokine profile elicited by the chromatin immune complexes that distinguishes this response from that of conventional TLR ligands, notably the induction of BAFF and the lack of induction of interleukin 12. The data establish a critical role for self-antigen in DC activation and explain how the innate immune system might drive the adaptive immune response in SLE.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1701
Author(s):  
Kelvin Anderson ◽  
Nathan Ryan ◽  
Arham Siddiqui ◽  
Travis Pero ◽  
Greta Volpedo ◽  
...  

Contact hypersensitivity (CHS) is the most common occupational dermatological disease. Dendritic cells (DCs) mediate the sensitization stage of CHS, while T-cells facilitate the effector mechanisms that drive CHS. Black raspberry (Rubus occidentalis, BRB) and BRB phytochemicals possess immunomodulatory properties, but their dietary effects on CHS are unknown. We examined the effects of diets containing BRB and protocatechuic acid (PCA, a constituent of BRB and an anthocyanin metabolite produced largely by gut microbes), on CHS, using a model induced by 2,4-dinitrofluorobenze (DNFB). Mice were fed control diet or diets supplemented with BRB or PCA. In vitro bone-marrow derived DCs and RAW264.7 macrophages were treated with BRB extract and PCA. Mice fed BRB or PCA supplemented diets displayed decreased DNFB-induced ear swelling, marked by decreased splenic DC accumulation. BRB extract diminished DC maturation associated with reduced Cd80 expression and Interleukin (IL)-12 secretion, and PCA reduced IL-12. Dietary supplementation with BRB and PCA induced differential decreases in IL-12-driven CHS mediators, including Interferon (IFN)-γ and IL-17 production by T-cells. BRB extracts and PCA directly attenuated CHS-promoting macrophage activity mediated by nitric oxide and IL-12. Our results demonstrate that BRB and PCA mitigate CHS pathology, providing a rationale for CHS alleviation via dietary supplementation with BRB or BRB derived anthocyanins.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Liang Xiao ◽  
Hana A Itani ◽  
Maria P Kraemer ◽  
Richard M Breyer ◽  
David G Harrison

We recently identified a pathway underlying immune activation in hypertension. Proteins oxidatively modified by reactive γ-ketoaldehydes (isoketals) accumulate in dendritic cells (DCs). These are immunogenic and lead to subsequent T lymphocytes activation. The local signals that stimulate DCs to accumulate isoketal adducts remain undefined. Prostaglandin E 2 (PGE 2 ) has been implicated in the inflammation associated with hypertension. We hypothesized that PGE 2 via its EP3 receptor contributes to DC activation in hypertension. EP3 -/- mice and wild type (WT) littermates were exposed to sequential hypertensive stimuli involving an initial 2-week exposure to the NOS inhibitor L-NAME (LN) in drinking water, a 2 week washout period, and a subsequent 4% high salt diet (HS) for 3 weeks. In WT mice, this protocol increased systolic pressure from 123±2 to 148±8 mmHg (p<0.05), and renal CD4 + and CD8 + effector memory T cells by 2 to 3 fold. This was associated with a striking accumulation of isoketal protein adducts in splenic DCs. However, the increases in blood pressure, renal T cell infiltration and DC isoketal formation were completely prevented in EP3 -/- mice. We further hypothesized that EP3 receptors contribute to oxidative stress production in the kidney. As measured by dihydroethidium with confocal microscopy, the LNHS protocol induced marked increases in superoxide production in WT mice, but not in EP3 -/- mice. To examine the direct effects of PGE 2 , splenic DCs were incubated with PGE 2 in vitro for 24 hours. PGE 2 dose-dependently increased isoketal-adduct formation in DCs (vehicle: 8.8±5.1% vs. 50 nM PGE 2 : 41.4±11.7%, p<0.05). Interestingly, this effect was not blocked by the EP3 receptor antagonist DG-041 (30 nM), but was completely prevented by the EP1 receptor blocker SC-51322 (20 μM). These data indicate both direct and indirect roles of PGE 2 in DC activation in hypertension. In vivo, PGE 2 has a predominant effect on EP3 receptors to enhance renal vascular ROS production, which likely leads to isoketal-adduct formation and accumulation in DCs. PGE 2 also acts directly on DCs via its EP1 receptors to stimulate intracellular isoketal formation. Together, these findings provide additional information as to how PGE 2 modulates inflammation in hypertension.


2018 ◽  
Vol 29 (7) ◽  
pp. 1825-1837 ◽  
Author(s):  
Paul Diefenhardt ◽  
Anna Nosko ◽  
Malte A. Kluger ◽  
Johannes V. Richter ◽  
Claudia Wegscheid ◽  
...  

Background Th17 cells are central pathogenic mediators of autoimmune disease, including many forms of GN. IL-10 receptor signaling (IL-10R) in regulatory T cells (Tregs) has been implicated in the downregulation of Th17 cells, but the underlying molecular mechanisms and functional relevance of this process remain unclear.Methods We generated mice with Treg-specific IL-10Ra deficiency and subjected these mice to nephrotoxic serum–induced nephritis as a model of crescentic GN. Immune responses and Treg phenotypes were extensively analyzed.Results Compared with controls, mice with IL-10Ra−/− Tregs showed a spontaneously overshooting Th17 immune response. This hyper-Th17 phenotype was further boosted during GN and associated with aggravated renal injury. Notably, abrogation of IL-10Ra signaling in Tregs increased dendritic cell activation and production of Th17-inducing cytokines. In contrast, Treg trafficking and expression of chemokine receptor CCR6 remained unaffected, indicating mechanisms of Th17 control, differing from those of previously identified CCR6+ Treg17 cells. Indeed, the capacity for direct in vitro suppression of Th17 responses by IL-10Ra−/− Tregs was significantly impaired. As underlying pathology, analyses conducted in vitro and in vivo using double-fluorescent reporter mice revealed strikingly decreased IL-10 production by IL-10Ra−/− Tregs. To assess, whether reduced IL-10 could explain the hyper Th17 phenotype, competitive cotransfer experiments were performed. Supporting our concept, IL-10Ra−/− T cells differentiated into Th17 cells at much higher frequencies than wild type T cells did during GN.Conclusions IL-10R engagement optimizes Treg-mediated suppression of Th17 immunity. We hypothesize a feed-forward loop, in which IL-10Ra signaling reinforces IL-10 secretion by Tregs which potently controls Th17 development via direct and indirect mechanisms. IL-10R thus may be a promising therapeutic target for the treatment of GN.


2013 ◽  
Vol 81 (9) ◽  
pp. 3479-3489 ◽  
Author(s):  
Robert B. Clark ◽  
Jorge L. Cervantes ◽  
Mark W. Maciejewski ◽  
Vahid Farrokhi ◽  
Reza Nemati ◽  
...  

ABSTRACTThe total cellular lipids ofPorphyromas gingivalis, a known periodontal pathogen, were previously shown to promote dendritic cell activation and inhibition of osteoblasts through engagement of Toll-like receptor 2 (TLR2). The purpose of the present investigation was to fractionate all lipids ofP. gingivalisand define which lipid classes account for the TLR2 engagement, based on bothin vitrohuman cell assays andin vivostudies in mice. Specific serine-containing lipids ofP. gingivalis, called lipid 654 and lipid 430, were identified in specific high-performance liquid chromatography fractions as the TLR2-activating lipids. The structures of these lipids were defined using tandem mass spectrometry and nuclear magnetic resonance methods.In vitro, both lipid 654 and lipid 430 activated TLR2-expressing HEK cells, and this activation was inhibited by anti-TLR2 antibody. In contrast, TLR4-expressing HEK cells failed to be activated by either lipid 654 or lipid 430. Wild-type (WT) or TLR2-deficient (TLR2−/−) mice were injected with either lipid 654 or lipid 430, and the effects on serum levels of the chemokine CCL2 were measured 4 h later. Administration of either lipid 654 or lipid 430 to WT mice resulted in a significant increase in serum CCL2 levels; in contrast, the administration of lipid 654 or lipid 430 to TLR2−/−mice resulted in no increase in serum CCL2. These results thus identify a new class of TLR2 ligands that are produced byP. gingivalisthat likely play a significant role in mediating inflammatory responses both at periodontal sites and, potentially, in other tissues where these lipids might accumulate.


2002 ◽  
Vol 283 (3) ◽  
pp. G794-G800 ◽  
Author(s):  
Gijs J. D. van Acker ◽  
Ashok K. Saluja ◽  
Lakshmi Bhagat ◽  
Vijay P. Singh ◽  
Albert M. Song ◽  
...  

Intrapancreatic activation of trypsinogen is believed to play a critical role in the initiation of acute pancreatitis, but mechanisms responsible for intrapancreatic trypsinogen activation during pancreatitis have not been clearly defined. In previous in vitro studies, we have shown that intra-acinar cell activation of trypsinogen and acinar cell injury in response to supramaximal secretagogue stimulation could be prevented by the cell permeant cathepsin B inhibitor E64d (Saluja A, Donovan EA, Yamanaka K, Yamaguchi Y, Hofbauer B, and Steer ML. Gastroenterology 113: 304–310, 1997). The present studies evaluated the role of intrapancreatic trypsinogen activation, this time under in vivo conditions, in two models of pancreatitis by using another highly soluble cell permeant cathepsin B inhibitor,l-3-trans-(propylcarbamoyl)oxirane-2-carbonyl-l-isoleucyl-l-proline methyl ester (CA-074me). Intravenous administration of CA-074me (10 mg/kg) before induction of either secretagogue-elicited pancreatitis in mice or duct infusion-elicited pancreatitis in rats markedly reduced the extent of intrapancreatic trypsinogen activation and substantially reduced the severity of both pancreatitis models. These observations support the hypothesis that, during the early stages of pancreatitis, trypsinogen activation in the pancreas is mediated by the lysosomal enzyme cathepsin B. Our findings also suggest that pharmacological interventions that inhibit cathepsin B may prove useful in preventing acute pancreatitis or reducing its severity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Enhao Li ◽  
Xiaobao Yang ◽  
Yuzhang Du ◽  
Guanzheng Wang ◽  
David W. Chan ◽  
...  

Accumulating evidence suggests that tumor-infiltrating immune cells (TICs) in the tumor microenvironment (TME) serve as promising therapeutic targets. CXCL8 (IL-8) may also be a potential therapeutic target in cancer. CXCL8 is a potent chemotactic factor for neutrophils, myeloid-derived suppressor cells (MDSCs) and monocytes, which are considered immunosuppressive components in cancer-bearing hosts. Here, we identified the TME-related gene CXCL8 in a high-ImmuneScore population that contributed to better survival in colorectal cancer (CRC) patients from The Cancer Genome Atlas (TCGA) database. An integrated gene profile and functional analysis of TIC proportions revealed that the dendritic cell (DC) activation markers CD80, CD83, and CD86 were positively correlated with CXCL8 expression, suggesting that CXCL8 may be functional as antitumor immune response status in the TME. The gene signature was further validated in independent GSE14333 and GSE38832 cohorts from the Gene Expression Omnibus (GEO). To test the differential contributions of immune and tumor components to progression, three CRC cell lines, CT26, MC38 and HCT116, were used. In vitro results suggested no significant growth or survival changes following treatment with an inhibitor of the CXCL8 receptor (CXCR1/2) such as reparixin or danirixin. In vivo treatment with danirixin (antagonists of CXCR2) promoted tumor progression in animal models established with CT26 cells. CXCR2 antagonism may function via an immune component, with CXCR2 antagonist treatment in mice resulting in reduced activated DCs and correlating with decreased Interferon gamma (IFN-γ) or Granzyme B expressed CD8+ T cells. Furthermore, CXCL8 induced DC migration in transwell migration assays. Taken together, our data suggested that targeting the CXCL8-CXCR2 axis might impede DC activation or recruitment, and this axis could be considered a favorable factor rather than a target for critical antitumor effects on CRC.


2019 ◽  
Author(s):  
Nicholas M. Provine ◽  
Ali Amini ◽  
Lucy C. Garner ◽  
Christina Dold ◽  
Claire Hutchings ◽  
...  

AbstractMucosal-associated invariant T (MAIT) cells can be activated by viruses through a cytokine-dependent mechanism, and thereby protect from lethal infection. Given this, we reasoned MAIT cells may have a critical role in the immunogenicity of replication-incompetent adenovirus vectors, which are novel and highly potent vaccine platforms. In vitro, ChAdOx1 (Chimpanzee Adenovirus Ox1) induced potent activation of MAIT cells. Activation required transduction of monocytes and plasmacytoid dendritic cells to produce IL-18 and IFN-α, respectively. IFN-α-induced monocyte-derived TNF-α was identified as a novel intermediate in this activation pathway, and activation required combinatorial signaling of all three cytokines. Furthermore, ChAdOx1-induced in vivo MAIT cell activation in both mice and human volunteers. Strikingly, MAIT cell activation was necessary in vivo for development of ChAdOx1-induced HCV-specific CD8 T cell responses. These findings define a novel role for MAIT cells in the immunogenicity of viral vector vaccines, with potential implications for future design.One sentence summaryRobust immunogenicity of candidate adenovirus vaccine vectors requires the activation of unconventional T cells.


Sign in / Sign up

Export Citation Format

Share Document