The Acupuncture System and the Liquid Crystalline Collagen Fibers of the Connective Tissues

1998 ◽  
Vol 26 (03n04) ◽  
pp. 251-263 ◽  
Author(s):  
Mae-Wan Ho ◽  
David P. Knight

We propose that the acupuncture system and the DC body field detected by western scientists both inhere in the continuum of liquid crystalline collagen fibers that make up the bulk of the connective tissues. Bound water layers on the collagen fibers provide proton conduction pathways for rapid intercommunication throughout the body, enabling the organism to function as a coherent whole. This liquid crystalline continuum mediates hyperreactivity to allergens and the body's responsiveness to different forms of subtle energy medicine. It constitutes a "body consciousness" working in tandem with the "brain consciousness" of the nervous system. We review supporting evidence from biochemistry, cell biology, biophysics and neurophysiology, and suggest experiments to test our hypothesis.

Development ◽  
1960 ◽  
Vol 8 (1) ◽  
pp. 24-32
Author(s):  
Stuart E. Nichols ◽  
Willie M. Reams

Mammals, as a rule, are described as having melanocytes of neural crest origin confined almost entirely to the skin. Of the organs other than skin which have been described as possessing melanocytes are portions of the gonado-genital apparatus of the Opossum (Burns, 1939), and, in the house mouse, tissues of the nictitans, the meninges of the brain, the parathyroids, the thymus and harderian glands (Markert & Silvers, 1956), and the parathyroids of C58 mice (Dunn, 1949). The present investigation has been made in a strain of mice in which melanocytes are found in the connective tissues throughout much of the body. This strain originated several years ago in the Department of Genetics, Medical College of Virginia, from a cross between inbred C3H and black mice of unknown breed obtained from a local pet shop. Because of the latter circumstance, the line-bred progeny have been termed the PET/MCV strain.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
K. M. Kurian

The incidence of gliomas is on the increase, according to epidemiological data. This increase is a conundrum because the brain is in a privileged protected site behind the blood-brain barrier, and therefore partially buffered from environmental factors. In addition the brain also has a very low proliferative potential compared with other parts of the body. Recent advances in neural stem cell biology have impacted on our understanding of CNS carcinogenesis and tumor types. This article considers the cancer stem cell theory with regard to CNS cancers, whether CNS tumors arise from human neural stem cells and whether glioma stem cells can be reprogrammed.


PEDIATRICS ◽  
1956 ◽  
Vol 17 (5) ◽  
pp. 651-651

A relationship between oxygen content in inspired air and rate of erythrocyte formation had led to the postulation that oxygen tension in the marrow directly regulates the the production of erythrocytes. Intensive studies have failed to support this postulation. The present paper is concerned with a theory that reduced oxygen content in the blood leads to the production of an erythropoiesis-stimulating substance or humoral factor in the body. Some animal experiments have provided evidence in support of this concept. This paper presents experiments in man providing additional supporting evidence. Plasma obtained from normal adults, the cord blood of newborns, or from infants with erythroblastosis was injected into normal infants, intravenously. Plasma from normal adults produced no significant effect on the reticulocyte count. Cord plasma from normal newborns, who have markedly increased erythropoiesis and high reticulocyte counts at birth, and plasma from infants with erythroblastosis produced significant increase in the reticulocyte counts. The reticulocyte count rose one-third to twice the pre-injection level. The peak in the increase occurred between 30 minutes and 5 hours, and the levels returned to the pre-injection levels in 24 to 48 hours. The authors conclude that these findings are in confirmation of the animal experiments and offer evidence of a circulating reticulocytosis-producing substance controlling the rate of erythropoiesis. It is suggested that there is a center in the brain sensitive to oxygen tension which controls the elaboration of this humoral factor.


2008 ◽  
Vol 88 (11) ◽  
pp. 1265-1278 ◽  
Author(s):  
Lisa Stehno-Bittel

One of the most exciting cell biology fields of study concerns the physiology and pathology of fat. The basic assumptions once held concerning the function of adipose tissue have been shown to be oversimplified or sometimes completely wrong. Fat does more than store excess energy; it is actually the largest endocrine organ in the body, and it may be one of the most active. Adipocytes release hormones and other molecules that act on nearby tissues and travel through the vasculature to distant sites, such as the brain, skeletal muscle, and liver. Under conditions of normal weight, those signals help the body to suppress hunger, utilize glucose, and decrease the risk of cardiovascular disease. However, under conditions of obesity, the hormones (or the proteins that bind the hormones) become abnormal and can result in states of chronic inflammation leading to diabetes and heart disease. In addition, excessive fat can lead to the accumulation of lipid droplets in nonfat cells, including skeletal and cardiac muscle. Although some lipid droplets are used as an immediate source of energy for cells, large numbers of stored droplets can cause cellular damage and cell death. The purposes of this article are to review the normal and deviant signals released by fat cells, to draw a link between those signals and chronic diseases such as diabetes, and to discuss the role of exercise in reversing some of the deviant signaling perpetrated by excess fat.


Author(s):  
M.P. Sutunkova ◽  
B.A. Katsnelson ◽  
L.I. Privalova ◽  
S.N. Solovjeva ◽  
V.B. Gurvich ◽  
...  

We conducted a comparative assessment of the nickel oxide nanoparticles toxicity (NiO) of two sizes (11 and 25 nm) according to a number of indicators of the body state after repeated intraperitoneal injections of these particles suspensions. At equal mass doses, NiO nanoparticles have been found to cause various manifestations of systemic subchronic toxicity with a particularly pronounced effect on liver, kidney function, the body’s antioxidant system, lipid metabolism, white and red blood, redox metabolism, spleen damage, and some disorders of nervous activity allegedly related to the possibility of nickel penetration into the brain from the blood. The relationship between the diameter and toxicity of particles is ambiguous, which may be due to differences in toxicokinetics, which is controlled by both physiological mechanisms and direct penetration of nanoparticles through biological barriers and, finally, unequal solubility.


Parasitology ◽  
1941 ◽  
Vol 33 (4) ◽  
pp. 373-389 ◽  
Author(s):  
Gwendolen Rees

1. The structure of the proboscides of the larva of Dibothriorhynchus grossum (Rud.) is described. Each proboscis is provided with four sets of extrinsic muscles, and there is an anterior dorso-ventral muscle mass connected to all four proboscides.2. The musculature of the body and scolex is described.3. The nervous system consists of a brain, two lateral nerve cords, two outer and inner anterior nerves on each side, twenty-five pairs of bothridial nerves to each bothridium, four longitudinal bothridial nerves connecting these latter before their entry into the bothridia, four proboscis nerves arising from the brain, and a series of lateral nerves supplying the lateral regions of the body.4. The so-called ganglia contain no nerve cells, these are present only in the posterior median commissure which is therefore the nerve centre.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zakaria Djebbara ◽  
Lars Brorson Fich ◽  
Klaus Gramann

AbstractAction is a medium of collecting sensory information about the environment, which in turn is shaped by architectural affordances. Affordances characterize the fit between the physical structure of the body and capacities for movement and interaction with the environment, thus relying on sensorimotor processes associated with exploring the surroundings. Central to sensorimotor brain dynamics, the attentional mechanisms directing the gating function of sensory signals share neuronal resources with motor-related processes necessary to inferring the external causes of sensory signals. Such a predictive coding approach suggests that sensorimotor dynamics are sensitive to architectural affordances that support or suppress specific kinds of actions for an individual. However, how architectural affordances relate to the attentional mechanisms underlying the gating function for sensory signals remains unknown. Here we demonstrate that event-related desynchronization of alpha-band oscillations in parieto-occipital and medio-temporal regions covary with the architectural affordances. Source-level time–frequency analysis of data recorded in a motor-priming Mobile Brain/Body Imaging experiment revealed strong event-related desynchronization of the alpha band to originate from the posterior cingulate complex, the parahippocampal region as well as the occipital cortex. Our results firstly contribute to the understanding of how the brain resolves architectural affordances relevant to behaviour. Second, our results indicate that the alpha-band originating from the occipital cortex and parahippocampal region covaries with the architectural affordances before participants interact with the environment, whereas during the interaction, the posterior cingulate cortex and motor areas dynamically reflect the affordable behaviour. We conclude that the sensorimotor dynamics reflect behaviour-relevant features in the designed environment.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Conor McQuaid ◽  
Molly Brady ◽  
Rashid Deane

Abstract Background SARS-CoV-2, a coronavirus (CoV), is known to cause acute respiratory distress syndrome, and a number of non-respiratory complications, particularly in older male patients with prior health conditions, such as obesity, diabetes and hypertension. These prior health conditions are associated with vascular dysfunction, and the CoV disease 2019 (COVID-19) complications include multiorgan failure and neurological problems. While the main route of entry into the body is inhalation, this virus has been found in many tissues, including the choroid plexus and meningeal vessels, and in neurons and CSF. Main body We reviewed SARS-CoV-2/COVID-19, ACE2 distribution and beneficial effects, the CNS vascular barriers, possible mechanisms by which the virus enters the brain, outlined prior health conditions (obesity, hypertension and diabetes), neurological COVID-19 manifestation and the aging cerebrovascualture. The overall aim is to provide the general reader with a breadth of information on this type of virus and the wide distribution of its main receptor so as to better understand the significance of neurological complications, uniqueness of the brain, and the pre-existing medical conditions that affect brain. The main issue is that there is no sound evidence for large flux of SARS-CoV-2 into brain, at present, compared to its invasion of the inhalation pathways. Conclusions While SARS-CoV-2 is detected in brains from severely infected patients, it is unclear on how it gets there. There is no sound evidence of SARS-CoV-2 flux into brain to significantly contribute to the overall outcomes once the respiratory system is invaded by the virus. The consensus, based on the normal route of infection and presence of SARS-CoV-2 in severely infected patients, is that the olfactory mucosa is a possible route into brain. Studies are needed to demonstrate flux of SARS-CoV-2 into brain, and its replication in the parenchyma to demonstrate neuroinvasion. It is possible that the neurological manifestations of COVID-19 are a consequence of mainly cardio-respiratory distress and multiorgan failure. Understanding potential SARS-CoV-2 neuroinvasion pathways could help to better define the non-respiratory neurological manifestation of COVID-19.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Martin L. Pall

Abstract Millimeter wave (MM-wave) electromagnetic fields (EMFs) are predicted to not produce penetrating effects in the body. The electric but not magnetic part of MM-EMFs are almost completely absorbed within the outer 1 mm of the body. Rodents are reported to have penetrating MM-wave impacts on the brain, the myocardium, liver, kidney and bone marrow. MM-waves produce electromagnetic sensitivity-like changes in rodent, frog and skate tissues. In humans, MM-waves have penetrating effects including impacts on the brain, producing EEG changes and other neurological/neuropsychiatric changes, increases in apparent electromagnetic hypersensitivity and produce changes on ulcers and cardiac activity. This review focuses on several issues required to understand penetrating effects of MM-waves and microwaves: 1. Electronically generated EMFs are coherent, producing much higher electrical and magnetic forces then do natural incoherent EMFs. 2. The fixed relationship between electrical and magnetic fields found in EMFs in a vacuum or highly permeable medium such as air, predicted by Maxwell’s equations, breaks down in other materials. Specifically, MM-wave electrical fields are almost completely absorbed in the outer 1 mm of the body due to the high dielectric constant of biological aqueous phases. However, the magnetic fields are very highly penetrating. 3. Time-varying magnetic fields have central roles in producing highly penetrating effects. The primary mechanism of EMF action is voltage-gated calcium channel (VGCC) activation with the EMFs acting via their forces on the voltage sensor, rather than by depolarization of the plasma membrane. Two distinct mechanisms, an indirect and a direct mechanism, are consistent with and predicted by the physics, to explain penetrating MM-wave VGCC activation via the voltage sensor. Time-varying coherent magnetic fields, as predicted by the Maxwell–Faraday version of Faraday’s law of induction, can put forces on ions dissolved in aqueous phases deep within the body, regenerating coherent electric fields which activate the VGCC voltage sensor. In addition, time-varying magnetic fields can directly put forces on the 20 charges in the VGCC voltage sensor. There are three very important findings here which are rarely recognized in the EMF scientific literature: coherence of electronically generated EMFs; the key role of time-varying magnetic fields in generating highly penetrating effects; the key role of both modulating and pure EMF pulses in greatly increasing very short term high level time-variation of magnetic and electric fields. It is probable that genuine safety guidelines must keep nanosecond timescale-variation of coherent electric and magnetic fields below some maximum level in order to produce genuine safety. These findings have important implications with regard to 5G radiation.


Sign in / Sign up

Export Citation Format

Share Document