OBSERVATION OF THE GZK CUTOFF BY THE HIRes EXPERIMENT AND THE PIERRE AUGER OBSERVATORY

2008 ◽  
Vol 23 (17n20) ◽  
pp. 1290-1300 ◽  
Author(s):  
PIERRE SOKOLSKY

Results from the High Resolution Fly's Eye (HiRes) experiment and the Pierre Auger Observatory (PAO) on the observation of the Greissen-Zatsepin-Kuzmin cutoff in the cosmic ray spectrum are presented. Both experiments observe a cutoff consistent with the GZK predictions with a five and six sigma significance respectively. The nature of the cosmic ray composition near the GZK cutoff is discussed as well as the recent claim of a correlation of the highest energy cosmic rays with AGNs in the Southern sky.

1998 ◽  
Vol 15 (3) ◽  
pp. 332-335 ◽  
Author(s):  
R. W. Clay ◽  
N. R. Wild ◽  
D. J. Bird ◽  
B. R. Dawson ◽  
M. Johnston ◽  
...  

AbstractA cloud monitor has been developed for use with cosmic ray air shower fluorescence detectors, the High Resolution Fly's Eye and the Pierre Auger Observatory. This is based on an infrared thermopile device which, unlike previous such monitors, requires no moving chopper and is suitable for unattended operation over long periods of time.


2001 ◽  
Vol 16 (supp01c) ◽  
pp. 1019-1021
Author(s):  
JOHN BELZ

The High-Resolution Fly's Eye cosmic ray observatory has been operating in monocular (stereo) mode for about three years (one year), during which time we have observed extensive airshowers with an integrated aperture of ~ 1500 km2-sr-yr (~ 400 km-sr-yr) at 5×1019 eV. We describe the HiRes experiment and the nitrogen fluorescence technique, and present data taken in both monocular and stereo modes including preliminary energy spectra.


2009 ◽  
Vol 5 (H15) ◽  
pp. 251-253
Author(s):  
Vitor de Souza ◽  
Peter L. s Biermman

AbstractIn this paper we briefly discuss the present status of the cosmic ray astrophysics under the light of the new data from the Pierre Auger Observatory. The measured energy spectrum is used to test the scenario of production in nearby radio galaxies. Within this framework the AGN correlation would require that most of the cosmic rays are heavy nuclei and are widely scattered by intergalactic magnetic fields.


2019 ◽  
Vol 197 ◽  
pp. 02001
Author(s):  
Bianca Keilhauer

The Pierre Auger Observatory for detecting ultrahigh energy cosmic rays has been founded in 1999. After a main planning and construction phase of about five years, the regular data taking started in 2004, but it took another four years until the full surface detector array was deployed. In parallel to the main detectors of the Observatory, a comprehensive set of instruments for monitoring the atmospheric conditions above the array was developed and installed as varying atmospheric conditions influence the development and detection of extensive air showers. The multitude of atmospheric monitoring installations at the Pierre Auger Observatory will be presented as well as the challenges and efforts to run such instruments for several decades.


Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 128 ◽  
Author(s):  
Dariusz Góra ◽  

The Pierre Auger Observatory is the world’s largest operating detection system for the observation of ultra high energy cosmic rays (UHECRs), with energies above 10 17 eV. The detector allows detailed measurements of the energy spectrum, mass composition and arrival directions of primary cosmic rays in the energy range above 10 17 eV. The data collected at the Auger Observatory over the last decade show the suppression of the cosmic ray flux at energies above 4 × 10 19 eV. However, it is still unclear if this suppression is caused by the energy limitation of their sources or by the Greisen–Zatsepin–Kuzmin (GZK) cut-off. In such a case, UHECRs would interact with the microwave background (CMB), so that particles traveling long intergalactic distances could not have energies greater than 5 × 10 19 eV. The other puzzle is the origin of UHECRs. Some clues can be drawn from studying the distribution of their arrival directions. The recently observed dipole anisotropy has an orientation that indicates an extragalactic origin of UHECRs. The Auger surface detector array is also sensitive to showers due to ultra high energy neutrinos of all flavors and photons, and recent neutrino and photon limits provided by the Auger Observatory can constrain models of the cosmogenic neutrino production and exotic scenarios of the UHECRs origin, such as the decays of super heavy, non-standard-model particles. In this paper, the recent results on measurements of the energy spectrum, mass composition and arrival directions of cosmic rays, as well as future prospects are presented.


2018 ◽  
Vol 65 ◽  
pp. 47-70
Author(s):  
Alan Watson

James (Jim) Cronin had two outstanding careers. The first, in particle physics, included the discovery of CP violation for which he and Val Fitch were awarded the Nobel Prize in 1980. During the second, in cosmic rays, he played a major role in raising the profile of that field, particularly through his leadership in the creation of the Pierre Auger Observatory, the largest cosmic-ray detector ever constructed. He will be remembered for his incisive mind, his modest style, his internationalism and his encouragement of young scientists, as well as for his brilliance as an experimental physicist and data analyst.


2019 ◽  
Vol 210 ◽  
pp. 05011 ◽  
Author(s):  
Tim Huege ◽  

The Auger Engineering Radio Array (AERA) complements the Pierre Auger Observatory with 150 radio-antenna stations measuring in the frequency range from 30 to 80 MHz. With an instrumented area of 17 km2, the array constitutes the largest cosmic-ray radio detector built to date, allowing us to do multi-hybrid measurements of cosmic rays in the energy range of 1017 eV up to several 1018 eV. We give an overview of AERA results and discuss the significance of radio detection for the validation of the energy scale of cosmicray detectors as well as for mass-composition measurements.


2021 ◽  

With the 'Proceedings of the 1st virtual symposium on cosmic ray studies with neutron detectors' launches the new open access series 'Cosmic ray studies with neutron detectors'. The volume comprises the papers presented at the online meeting held in July 2020. The contributions show that neutron detectors on the ground provide significant results for studying the interaction of galactic cosmic rays with magnetic fields in the heliosphere, for accelerating energetic particles, and for a growing number of applications, including geophysics and space weather. The easily accessible databases around the project 'Real-Time database for high resolution Neutron Monitor measurements' (NMDB) make the original data readily available to a large user community.


2019 ◽  
Vol 208 ◽  
pp. 08001 ◽  
Author(s):  
Sergio Petrera

In this paper some recent results from the Pierre Auger Collaboration are presented. These are the measurement of the energy spectrum of cosmic rays over a wide range of energies (1017.5 to above 1020 eV), studies of the cosmic-ray mass composition with the fluorescence and surface detector of the Observatory, the observation of a large-scale anisotropy in the arrival direction of cosmic rays above 8 × 1018 eV and indications of anisotropy at intermediate angular scales above 4 × 1019 eV. The astrophysical implications of the spectrum and composition results are also discussed. Finally the progress of the upgrade of the Observatory, AugerPrime is presented.


2019 ◽  
Vol 210 ◽  
pp. 04002
Author(s):  
James H. Matthews ◽  
Anthony R. Bell ◽  
Anabella T. Araudo ◽  
Katherine M. Blundell

The origin of ultrahigh energy cosmic rays (UHECRs) is an open question. In this proceeding, we first review the general physical requirements that a source must meet for acceleration to 10-100 EeV, including the consideration that the shock is not highly relativistic. We show that shocks in the backflows of radio galaxies can meet these requirements. We discuss a model in which giant-lobed radio galaxies such as Centaurus A and Fornax A act as slowly-leaking UHECR reservoirs, with the UHECRs being accelerated during a more powerful past episode. We also show that Centaurus A, Fornax A and other radio galaxies may explain the observed anisotropies in data from the Pierre Auger Observatory, before examining some of the difficulties in associating UHECR anisotropies with astrophysical sources.


Sign in / Sign up

Export Citation Format

Share Document