scholarly journals A note on cosmological features of modified Newtonian potentials

2019 ◽  
Vol 34 (21) ◽  
pp. 1950168 ◽  
Author(s):  
M. Kord Zangeneh ◽  
H. Moradpour ◽  
N. Sadeghnezhad

Considering some modified Newtonian potentials and the Hubble law in writing the total energy of a test mass located at the edge of a flat Friedmann–Robertson–Walker (FRW) universe, we obtain several modified Friedmann equations. Interestingly enough, our study shows that the employed potentials, while some of them have some successes in modeling the spiral galaxies rotation curves, may also address an accelerated universe. This fact indicates that dark energy and dark matter may have some common origins and aspects.

2013 ◽  
Vol 28 (01) ◽  
pp. 1250235 ◽  
Author(s):  
LUIS P. CHIMENTO ◽  
MÓNICA FORTE ◽  
MARTÍN G. RICHARTE

We investigate a spatially flat Friedmann–Robertson–Walker (FRW) universe where dark matter exchanges energy with a self-interacting holographic dark energy (SIHDE). Using the χ2-statistical method on the Hubble function, we obtain a critical redshift that seems to be consistent with both BAO and CMB data. We calculate the theoretical distance modulus for confronting with the observational data of SNe Ia for small redshift z ≤ 0.1 and large redshift 0.1 ≤ z ≤ 1.5. The model gets accelerated faster than the ΛCDM one and it can be a good candidate to alleviate the coincidence problem. We also examine the age crisis at high redshift associated with the old quasar APM 08279+5255.


2012 ◽  
Vol 21 (11) ◽  
pp. 1242002 ◽  
Author(s):  
PRITI MISHRA ◽  
TEJINDER P. SINGH

Flat galaxy rotation curves and the accelerating Universe both imply the existence of a critical acceleration, which is of the same order of magnitude in both the cases, in spite of the galactic and cosmic length scales being vastly different. Yet, it is customary to explain galactic acceleration by invoking gravitationally bound dark matter, and cosmic acceleration by invoking a "repulsive" dark energy. Instead, might it not be the case that the flatness of rotation curves and the acceleration of the Universe have a common cause? In this essay we propose a modified theory of gravity. By applying the theory on galactic scales we demonstrate flat rotation curves without dark matter, and by applying it on cosmological scales we demonstrate cosmic acceleration without dark energy.


2017 ◽  
Vol 32 (28) ◽  
pp. 1750152
Author(s):  
Emiliano Marachlian ◽  
I. E. Sánchez G. ◽  
Osvaldo P. Santillán

A cosmological scenario where dark matter interacts with a variable vacuum energy for a spatially flat Friedmann–Robertson–Walker (FRW) spacetime is proposed and analyzed to show that with a linear equation of state and a particular interaction in the dark sector it is possible to get a model of an Emergent Universe. In addition, the viability of two particular models is studied by taking into account the recent observations. The updated observational Hubble data and the JLA supernovae data are used in order to constraint the cosmological parameters of the models and estimate the amount of dark energy in the radiation era. It is shown that the two models fulfil the severe bounds of [Formula: see text] at the 2[Formula: see text] level of Planck.


Author(s):  
I. Brevik ◽  
A. V. Timoshkin

We explore the cosmological models of the late-time universe based on the holographic principle, taking into account the properties of the viscosity of the dark fluid. We use the mathematical formalism of generalized infrared cutoff holographic dark energy, as presented by Nojiri and Odintsov [Covariant generalized holographic dark energy and accelerating universe, Eur. Phys. J. C 77 (2017) 528]. We consider the Little Rip, the Pseudo Rip, and a bounce exponential model, with two interacting fluids, namely dark energy and dark matter in a spatially-flat Friedmann–Robertson–Walker universe. Within these models, analytical expressions are obtained for infrared cutoffs in terms of the particle horizons. The law of conservation of energy is presented, from a holographic point of view.


2019 ◽  
Vol 488 (4) ◽  
pp. 5127-5144 ◽  
Author(s):  
Lizbeth M Fernández-Hernández ◽  
Ariadna Montiel ◽  
Mario A Rodríguez-Meza

ABSTRACT We present a non-parametric reconstruction of the rotation curves (RCs) for 88 spiral galaxies using the LOESS (locally weighted scatterplot smoothing) + SIMEX (simulation and extrapolation) technique. In order to compare methods, we also use a parametric approach, assuming core and cuspy dark matter (DM) profiles: pseudo-isothermal (PISO), Navarro−Frenk–White (NFW), Burkert, Spano, the soliton, and two fuzzy soliton + NFW. As a result of these two approaches, a comparison of the RCs obtained is carried out by computing the distance between the central curves and the distance between the 1σ error bands. Furthermore, we perform a model selection according to two statistical criteria, the Bayesian information criterion and the value of $\chi ^2_{\rm red}$. We work with two groups. The first is a comparison between PISO, NFW, Spano and Burkert, showing that Spano is the most favoured model satisfying our selection criteria. For the second group, we select the soliton, NFW and fuzzy models, resulting in soliton as the best model. Moreover, according to the statistical tools and non-parametric reconstruction, we are able to classify galaxies as core or cuspy. Finally, using a Markov chain Monte Carlo method, for each of the DM models we compute the characteristic surface density, μDM = ρsrs, and the mass within 300 pc. We find that there is a common mass for spiral galaxies of the order of 107 M⊙, which is in agreement with results for dSph Milky Way satellites, independent of the model. This result is also consistent with our finding that there is a constant characteristic volume density of haloes. Finally, we also find that μDM is not constant, which is in tension with the literature.


2004 ◽  
Vol 220 ◽  
pp. 311-312
Author(s):  
Gianfranco Gentile ◽  
Uli Klein ◽  
Paolo Salucci ◽  
Daniela Vergani

We use photometric, Hα and Hi data to investigate the distribution of dark matter in spiral galaxies. A new technique for deriving the Hi rotation curve is presented. the final combined Hα+Hi rotation curves are symmetric, well resolved and extend to large radii. We perform the rotation curve decomposition into the luminous and dark matter contributions. the observations are confronted with different models of the dark matter distribution, including core-dominated and cusp-dominated halos as well as less conventional possibilities. the best agreement with the observations is found for the core-dominated halos.


1987 ◽  
Vol 117 ◽  
pp. 51-65 ◽  
Author(s):  
Vera C. Rubin

From the observed rotation curves of Sa, Sb, and Sc spiral galaxies, it is possible to deduce a dozen constraints on the nonluminous matter in spirals. Within the optical image, the dark matter is less concentrated than the luminous, and contributes about 1/2 of the mass, for spirals of all Hubble types and luminosities.


2019 ◽  
Vol 34 (13) ◽  
pp. 1950098 ◽  
Author(s):  
Can Aktaş

In this paper, we have researched tachyon field, k-essence and quintessence dark energy (DE) models for Friedmann–Robertson–Walker (FRW) universe with varying G and [Formula: see text] in f(R, T) gravitation theory. The theory of f(R, T) is proposed by Harko et al. [Phys. Rev. D 84, 024020, 2011]. In this theory, R is the Ricci scalar and T is the trace of energy–momentum tensor. For the solutions of field equations, we have used linearly varying deceleration parameter (LVDP), the equation of state (EoS) and the ratio between [Formula: see text] and Hubble parameter. Also, we have discussed some physical behavior of the models with various graphics.


2020 ◽  
Vol 35 (38) ◽  
pp. 2050318
Author(s):  
Umesh Kumar Sharma ◽  
Shikha Srivastava

In this work, we have considered the recently proposed new Tsallis agegraphic dark energy (NTADE) model [Mod. Phys. Lett. A 34, 1950086 (2019)] within the framework of a flat Friedmann–Robertson–Walker (FRW) Universe by taking various values of the parameter [Formula: see text]. The NTADE model shows the current phase transition of the Universe from decelerated to accelerated phase. The NTADE equation of state (EoS) parameter shows a rich behavior as it can be quintessence-like or phantom-like depending on the value of [Formula: see text]. For discriminating the NTADE model from [Formula: see text]CDM, we have plotted the statefinder parameters [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] pair. The NTADE model shows distinct evolutionary trajectories of their evolution in ([Formula: see text]) and ([Formula: see text]) plane. An analysis using the snap parameter and the [Formula: see text] pair dynamical analysis have also been performed.


Sign in / Sign up

Export Citation Format

Share Document