scholarly journals Physics at a Higgs factory

2016 ◽  
Vol 31 (33) ◽  
pp. 1644003 ◽  
Author(s):  
Matthew Reece

I give an overview of the physics potential at possible future [Formula: see text] colliders, including the ILC, FCC-ee, and CEPC. The goal is to explain some of the measurements that can be done in the context of electroweak precision tests and Higgs couplings, to compare some of the options under consideration, and to put the measurements in context by summarizing their implications for some new physics scenarios. This is a writeup of a plenary talk at the Hong Kong University of Science and Technology Jockey Club Institute for Advanced Study Program on High Energy Physics Conference, 18–21 January 2016. Some previously unpublished electroweak precision results for FCC-ee and CEPC are included.

2016 ◽  
Vol 31 (33) ◽  
pp. 1644001 ◽  
Author(s):  
Chris Quigg

Opening Lecture at the Hong Kong University of Science and Technology Jockey Club Institute for Advanced Study Program on High Energy Physics Conference, January 18–21, 2016.


1998 ◽  
Vol 13 (40) ◽  
pp. 3235-3249 ◽  
Author(s):  
S. I. BITYUKOV ◽  
N. V. KRASNIKOV

We propose a method to estimate the probability of new physics discovery in future high energy physics experiments. Physics simulation gives both the average numbers <Nb> of background and <Ns> of signal events. We find that the proper definition of the significance for <Nb>, <Ns> ≫ 1 is [Formula: see text] in comparison with often used significances: [Formula: see text] and [Formula: see text]. We propose a method of taking into account the systematical errors related to nonexact knowledge of background and signal cross-sections. An account of such systematics is essential in the search for supersymmetry at LHC. We also propose a method for estimating exclusion limits on new physics in future experiments.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Andy Buckley ◽  
Jonathan Butterworth ◽  
Louie Corpe ◽  
Martin Habedank ◽  
Danping Huang ◽  
...  

Measurements at particle collider experiments, even if primarily aimed at understanding Standard Model processes, can have a high degree of model independence, and implicitly contain information about potential contributions from physics beyond the Standard Model. The CONTUR package allows users to benefit from the hundreds of measurements preserved in the RIVET library to test new models against the bank of LHC measurements to date. This method has proven to be very effective in several recent publications from the CONTUR team, but ultimately, for this approach to be successful, the authors believe that the CONTUR tool needs to be accessible to the wider high energy physics community. As such, this manual accompanies the first user-facing version: CONTUR v2. It describes the design choices that have been made, as well as detailing pitfalls and common issues to avoid. The authors hope that with the help of this documentation, external groups will be able to run their own CONTUR studies, for example when proposing a new model, or pitching a new search.


2012 ◽  
Vol 58 (4) ◽  
pp. 327-334 ◽  
Author(s):  
Ryszard S. Romaniuk

Abstract Accelerator science and technology is one of a key enablers of the developments in the particle physics, photon physics, electronics and photonics, also applications in medicine and industry. The paper presents a digest of the research results in accelerators in Europe, shown during the third annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. EuCARD concerns building of research infrastructure, including advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large extent, multichannel systems for metrological data acquisition, precision photonic networks for reference time distribution.


2017 ◽  
Vol 32 (09) ◽  
pp. 1741017
Author(s):  
Hirotaka Sugawara

At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, [Formula: see text] (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.


2019 ◽  
Vol 34 (02) ◽  
pp. 1930002 ◽  
Author(s):  
George Wei-Shu Hou

This brief review grew out from the HEP concluding talk of the 25th Anniversary of the Rencontres du Vietnam, held in August 2018, at Quy Nhon. The first two-thirds gives a summary and highlights, or snapshot, of High Energy Physics at the end of Large Hadron Collider (LHC) Run 2. It can be viewed as the combined effort of the program organizers, the invited plenary speakers, and finally filtered into the present mosaic. It certainly should not be viewed as comprehensive. In the second one-third, a more personal perspective and outlook is given, including my take on the flavor anomalies, and why the next three years, the period of Long Shutdown 2 plus first year (or more) of LHC Run 3, would be bright and flavorful, with much hope for uncovering New Physics. We advocate extra Yukawa couplings as the most likely, next, New Physics to be tested, the effect of which is already written in our Matter Universe.


2001 ◽  
Vol 16 (25) ◽  
pp. 4085-4151 ◽  
Author(s):  
ANTONELLA DE SANTO

Neutrinos, and primarily neutrino oscillations, have undoubtedly been one of the most exciting topics in the field of high-energy physics over the past few years. The existence of neutrino oscillations would require an extension of the currently accepted description of sub-nuclear phenomena beyond the Standard Model. Compelling evidence of new physics, which seems to be pointing towards neutrino oscillations, is coming from the solar neutrino deficit and from the atmospheric neutrino anomaly. More controversial effects have been observed with artificially produced neutrinos. The present experimental status of neutrino oscillations is reviewed, as well as the planned future experimental programme, which, it is hoped, will solve most of the outstanding puzzles.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Thorben Finke ◽  
Michael Krämer ◽  
Alessandro Morandini ◽  
Alexander Mück ◽  
Ivan Oleksiyuk

Abstract Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy physics as a promising tool for model-independent new physics searches. We scrutinize the usage of autoencoders for unsupervised anomaly detection based on reconstruction loss to show their capabilities, but also their limitations. As a particle physics benchmark scenario, we study the tagging of top jet images in a background of QCD jet images. Although we reproduce the positive results from the literature, we show that the standard autoencoder setup cannot be considered as a model-independent anomaly tagger by inverting the task: due to the sparsity and the specific structure of the jet images, the autoencoder fails to tag QCD jets if it is trained on top jets even in a semi-supervised setup. Since the same autoencoder architecture can be a good tagger for a specific example of an anomaly and a bad tagger for a different example, we suggest improved performance measures for the task of model-independent anomaly detection. We also improve the capability of the autoencoder to learn non-trivial features of the jet images, such that it is able to achieve both top jet tagging and the inverse task of QCD jet tagging with the same setup. However, we want to stress that a truly model-independent and powerful autoencoder-based unsupervised jet tagger still needs to be developed.


2021 ◽  
Vol 251 ◽  
pp. 02070
Author(s):  
Matthew Feickert ◽  
Lukas Heinrich ◽  
Giordon Stark ◽  
Ben Galewsky

In High Energy Physics facilities that provide High Performance Computing environments provide an opportunity to efficiently perform the statistical inference required for analysis of data from the Large Hadron Collider, but can pose problems with orchestration and efficient scheduling. The compute architectures at these facilities do not easily support the Python compute model, and the configuration scheduling of batch jobs for physics often requires expertise in multiple job scheduling services. The combination of the pure-Python libraries pyhf and funcX reduces the common problem in HEP analyses of performing statistical inference with binned models, that would traditionally take multiple hours and bespoke scheduling, to an on-demand (fitting) “function as a service” that can scalably execute across workers in just a few minutes, offering reduced time to insight and inference. We demonstrate execution of a scalable workflow using funcX to simultaneously fit 125 signal hypotheses from a published ATLAS search for new physics using pyhf with a wall time of under 3 minutes. We additionally show performance comparisons for other physics analyses with openly published probability models and argue for a blueprint of fitting as a service systems at HPC centers.


Sign in / Sign up

Export Citation Format

Share Document