Observational constraints of bulk viscous Friedmann–Robertson–Walker cosmology with hybrid expansion law

2020 ◽  
Vol 35 (27) ◽  
pp. 2050173
Author(s):  
Partha Sarathi Debnath

In this work, we study bulk viscous Friedmann–Robertson–Walker cosmologies with hybrid expansion law. The bulk viscous theory of dissipative effects described by Eckart theory, truncated Israel–Stewart theory and full Israel–Stewart theory are implemented here. The hybrid expansion law model of scale factor is a general analytic type of evolution from which one can recover power-law and exponential expansion as a special cases. Hybrid expansion law model are applied to describe the present accelerating phase and early phases of evolution. We have determined the cosmological parameters such as Hubble parameter, deceleration parameter, jerk parameter, energy density, bulk viscous pressure and coefficient of bulk viscosity of the universe to construct physically acceptable cosmological model. We have considered both flat and closed space–time of Friedmann–Robertson–Walker cosmology to implement hybrid expansion law with dissipative effect. The variations of the coefficient of bulk viscosity with cosmic evolution are studied here in Eckart, truncated and full Israel–Stewart theory for flat and closed space–time to obtain physically acceptable hybrid expansion models driven by viscosity. We have also estimated observational constraints of the parameters of hybrid expansion law model by considering recent observational data set. We further reveal possible connections of our models with [Formula: see text] tension problem.

2017 ◽  
Vol 26 (02) ◽  
pp. 1750012 ◽  
Author(s):  
B. Pourhassan ◽  
J. Naji

In this paper, we consider tachyonic matter in spatially flat Friedmann–Robertson–Walker (FRW) universe, and obtain behavior of some important cosmological parameters for two special cases of potentials. First, we assume the exponential potential and then consider hyperbolic cosine type potential. In both cases, we obtain behavior of the Hubble, deceleration and EoS parameters. Comparison with observational data suggest the model with hyperbolic cosine type scalar field potentials has good model to describe universe.


2015 ◽  
Vol 93 (1) ◽  
pp. 14-17
Author(s):  
Raj Bali ◽  
Seema Saraf

A cosmological model that admits barotropic fluid distribution and a negative energy massless scalar creation field as a source in the presence of bulk viscosity and vacuum energy (Λ) in Friedmann–Robertson–Walker space–time is investigated. It has been shown that the model satisfies observational tests and is thus an alternative to the standard Big Bang model. The model is free from real singularity and particle horizon. The creation field increases with time, which matches Hoyle and Narlikar (Proc. Roy. Soc. A, 282, 178 (1964). doi:10.1098/rspa.1964.0225 ). To get the deterministic results, we have assumed that the coefficient of bulk viscosity, ζαρ1/2, where ρ is the matter density, ρ = 3H2, Λ ∼ H2, where H is the Hubble parameter. The model satisfies the energy conditions (weak, dominant, and strong). The deceleration parameter, q < 0, shows that the model represents an accelerating phase of the universe.


Author(s):  
Chayan Ranjit ◽  
Sayeedul Islam ◽  
Surajit Chattopadhyay ◽  
Ertan Gudekli

In this work, we have studied various cosmological parameters in the presence of viscous new Tsallis holographic dark energies for interacting scenarios in the framework of Chern–Simons modified gravity. The bulk viscosity has been considered with the bulk viscous pressure chosen in the form [Formula: see text]. Hubble parameter [Formula: see text] has been obtained from the above choice of scale factor and in this viscous scenario, the effective pressure has been obtained in Chern–Simons framework whose field equation, cosmological consequences have been investigated. It has been observed that for the interaction scenario in the presence of bulk viscosity the EoS parameter is staying above [Formula: see text], which indicates quintessence behavior. Hence, for the universe filled with a bulk viscous fluid can have the possibility of avoidance of big-rip, although the earlier transition from quintessence to phantom is not avoidable.


1995 ◽  
Vol 10 (06) ◽  
pp. 515-524 ◽  
Author(s):  
J. M. FIGUEROA-O'FARRILL ◽  
C. M. HULL ◽  
L. PALACIOS ◽  
E. RAMOS

The conventional quantization of w3-strings gives theories which are equivalent to special cases of bosonic strings. We explore whether a more general quantization can lead to new generalized W3-string theories by seeking to construct quantum BRST charges directly without requiring the existence of a quantum W3-algebra. We study W3-like strings with a direct space-time interpretation — that is, with matter given by explicit free field realizations. Special emphasis is placed on the attempt to construct a quantum W-string associated with the magic realizations of the classical w3-algebra. We give the general conditions for the existence of W3-like strings, and comment on how the known results fit into our general construction. Our results are negative: we find no new consistent string theories, and in particular rule out the possibility of critical strings based on the magic realizations.


1988 ◽  
Vol 03 (08) ◽  
pp. 1959-1979 ◽  
Author(s):  
CHIA-HSIUNG TZE

We present an alternative formulation of Polyakov’s regularization of Gauss’ integral formula for a single closed Feynman path. A key element in his proof of the D=3 fermi-bose transmutations induced by topological gauge fields, this regularization is linked here with the existence and properties of a nontrivial topological invariant for a closed space ribbon. This self-linking coefficient, an integer, is the sum of two differential characteristics of the ribbon, its twisting and writhing numbers. These invariants form the basis for a physical interpretation of our regularization. Their connection to Polyakov’s spinorization is discussed. We further generalize our construction to the self-linking, twisting and writhing of higher dimensional d=n (odd) submanifolds in D=(2n+1) space-time. Our comprehensive analysis intends to supplement Polyakov’s work as it identifies a natural path to its higher dimensional mathematical and physical generalizations. Combining the theorems of White on self-linking of manifolds and of Adams on nontrivial Hopf fibre bundles and the four composition-division algebras, we argue that besides Polyakov’s case where (d, D)=(1, 3) tied to complex numbers, the potentially interesting extensions are two chiral models with (d, D)=(3, 7) and (7, 15) uniquely linked to quaternions and octonions. In Memoriam Richard P. Feynman


2021 ◽  
Vol 71 (6) ◽  
pp. 1581-1598
Author(s):  
Vahid Nekoukhou ◽  
Ashkan Khalifeh ◽  
Hamid Bidram

Abstract The main aim of this paper is to introduce a new class of continuous generalized exponential distributions, both for the univariate and bivariate cases. This new class of distributions contains some newly developed distributions as special cases, such as the univariate and also bivariate geometric generalized exponential distribution and the exponential-discrete generalized exponential distribution. Several properties of the proposed univariate and bivariate distributions, and their physical interpretations, are investigated. The univariate distribution has four parameters, whereas the bivariate distribution has five parameters. We propose to use an EM algorithm to estimate the unknown parameters. According to extensive simulation studies, we see that the effectiveness of the proposed algorithm, and the performance is quite satisfactory. A bivariate data set is analyzed and it is observed that the proposed models and the EM algorithm work quite well in practice.


2017 ◽  
Vol 32 (28) ◽  
pp. 1750152
Author(s):  
Emiliano Marachlian ◽  
I. E. Sánchez G. ◽  
Osvaldo P. Santillán

A cosmological scenario where dark matter interacts with a variable vacuum energy for a spatially flat Friedmann–Robertson–Walker (FRW) spacetime is proposed and analyzed to show that with a linear equation of state and a particular interaction in the dark sector it is possible to get a model of an Emergent Universe. In addition, the viability of two particular models is studied by taking into account the recent observations. The updated observational Hubble data and the JLA supernovae data are used in order to constraint the cosmological parameters of the models and estimate the amount of dark energy in the radiation era. It is shown that the two models fulfil the severe bounds of [Formula: see text] at the 2[Formula: see text] level of Planck.


2011 ◽  
Vol 26 (22) ◽  
pp. 3878-3888 ◽  
Author(s):  
D. A. KONKOWSKI ◽  
T. M. HELLIWELL

The definition of quantum singularity is extended from static space-times to conformally static space-times. After the usual definitions of classical and quantum singularities are reviewed, examples of quantum singularities in static space-times are given. These include asymptotically power-law space-times, space-times with diverging higher-order differential invariants, and a space-time with a 2-sphere singularity. The theory behind quantum singularities in conformally static space-times is followed by an example, a Friedmann-Robertson-Walker space-time with cosmic string. The paper concludes by discussing areas of future research.


Author(s):  
Wanfang Chen ◽  
Marc G. Genton ◽  
Ying Sun

In recent years, interest has grown in modeling spatio-temporal data generated from monitoring networks, satellite imaging, and climate models. Under Gaussianity, the covariance function is core to spatio-temporal modeling, inference, and prediction. In this article, we review the various space-time covariance structures in which simplified assumptions, such as separability and full symmetry, are made to facilitate computation, and associated tests intended to validate these structures. We also review recent developments on constructing space-time covariance models, which can be separable or nonseparable, fully symmetric or asymmetric, stationary or nonstationary, univariate or multivariate, and in Euclidean spaces or on the sphere. We visualize some of the structures and models with visuanimations. Finally, we discuss inference for fitting space-time covariance models and describe a case study based on a new wind-speed data set. Expected final online publication date for the Annual Review of Statistics, Volume 8 is March 8, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2019 ◽  
Vol 34 (27) ◽  
pp. 1950152
Author(s):  
Z. Sakhi ◽  
A. Safsafi ◽  
M. Ferricha-Alami ◽  
H. Chakir ◽  
M. Bennai

The reheating era after inflation is analyzed in the framework of the braneworld models. We study reheating by calculating the reheating temperature in a braneworld inflation for various cosmological parameters. The variation of reheating [Formula: see text]-folding number and reheating temperature were obtained and analyzed as function of a spectrum of perturbation for a polynomial potential [Formula: see text]. We have applied the slow-roll approximation in the high energy limit to constraint the parameter potentials by confronting our results to recent Planck 2018 observations. We have shown that in general the best values of the predicted reheating temperature is of the order [Formula: see text] GeV, with a brane tension [Formula: see text] GeV4. We have also shown that the polynomial potential in the case [Formula: see text] provides the best fit results with recent observational constraints.


Sign in / Sign up

Export Citation Format

Share Document